RD-R198 618 R GRAPHICS EDITOR FOR STRUCTURED ANALYSIS WITH A DATA 172
OICTIONARYC(U) AIR FORCE INST OF TECH WRIGHT-PRTTERSON
AFB_OH SCHOOL OF ENGINEERING S E JOHNSON DEC 87
UNCLASSIFIED RFIT/GE/ENG/87D-28 Fs7G 12/3

R

ASATANA VY VW WY TR

ey © ®

gy

o
HA

e £ = gz
m" T 2

== |
S e s

MICROCOPY RESOLUTION TEST CHART
NAT:ONAL BUREAU OF STANOARDS ~ 1961~

L J e hd
o 4 “w _‘(_
% o .&:}\ \.&ﬁ\ oA
s e

T
e 7
-

1,
P> ’
-
§ : e

L
R {
N
‘i.

AD-A190 618

$

&
. amarny —~—— ———

~

SR L - A
AN .

XU

3

“0.4 l

- g | -
{._ - A GRAPHICS EDPITOR FOR STRUCTURED

DO .

L ~

o { ANALYSIS WITH A DATA DICTIONARY

Y.
‘:'. s
A,.) Y THESIS

- - >
3 - Steven E. Johnson "
:in Captain, USAF .
3 »

AFIT/GE/ENG/87D-28

pDTIC

. MAR 2 8 1983

- -

9. DEPARTMENT OF THE AIR FORCE C%E 5y
25" - AIR UNIVERSITY

<

AIR FORCE INSTITUTE OF TECHNOLOGY

1
[e———

s

o !
:j L Wrighi-Patterson Air Force Base, Ohio “
. Thie decament n:‘-:p:vﬂ 08

¢ ice pubjlie relaces
k. L :mul:- ts wnlmitedy,» * 88 3 24 8
X
i'|' X

A A T NN R RO O DRI SISO OO O ot TR ¢ LA A
A% I e Tt e (e AT VW gt e M e ey !'5‘2’2‘-.’0 b b, \'3'!‘:'0‘, RX sl.:'t‘:'d.‘ '.:'o‘.'o‘.. t.‘:'n'.:‘.,:'o',:'s!. Gttt i nty!

AF1T/GE/ENG/87D-28

o 5

s B

& A

x
ot

A

VI =5

A GRAPHICS EDITOR FOR STRUCTURED

e

4 ANALYSIS WITH A DATA DICTIONARY
q THESIS

LY

Steven E. Johnson
Captain, USAF

b

AFIT/GE/ENG/87D-28 “ =

vy 'r % m

Approved for public release; distribution unlimited

[¥-%

ey

Ly

XY -! -r-r-f(R TR « rr.r-..r._.._.ru v e
W O .u .‘q,.'« ..' Jc. WA, "f‘r ot .y “}" ,c“a .~ RN ...“

4, oolqn

W e sove®,

- -

r oy iy e

P R

P

rEx

S‘t...‘

Fer VA,

1

AFIT/GE/ENG/87D-28

A GRAPHICS EDITOR FOR STRUCTURED

ANALYSIS WITH A DATA DICTIONARY

THESIS

Presegted to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Accession Por
, NTIS GRAXL a
DTIC TAB (]

Unannounced O
Justification |
Steven E. Johnson, B.S By
° ! e Distribution/

Avallability Codes
- . . ~ SR
Availl and/for
Dist Speclial

December 1987 H‘I

Captain, USAF

Approved for public release; distribution unlimited

w S

WaTE T WP W NS, ‘T¢!.‘

RO R T T b T A R WS W D T 2 _ :
Il’v "v:"& |'0,\“t?‘-'- $eh ‘_’\"f-‘ P,".‘A'-'Q',ﬂﬁ L ﬁ,-"i: l“, N 'v.-‘;-"‘Q"ﬁ"h‘!b“»i:vd:‘!d"‘. ‘f,. A .h‘, h .ﬁ". P M ﬁ' KA PN LN |.o) :‘l ALY "' A\ i) !“

o

)

s m

-
Y
¥

:' _)‘JH

-

L 255

M
KOACH '

Preface

The purpose of this thesis was to build a tool that
would integrate the use of structured analysis diagrams with
data dictionaries for doing software requirements analysis.
Separate, these two approaches are time consuming and
involve a large duplication of effort. Using the tool, the
duplication of effort is removed, thus improving the
analyst’s productivity.

The tool was designed to provide the graphical
capabilities needed to create the diagram in addition to
capabilities to enter the remaining data dictionary
information. Data dictionary information may be transferred
to and from a relational database that stores the entire
project dictionary.

In preparing this thesis, I extend my gratitude to
several people for their contributions. I thank my advisor,
Dr. Thomas C. Hartrum, for his guidance and support for me
and this thesis. Also, I thank the two other gentlemen on
my committee, Major Phil Amburn and Captain James Howatt,
for their expertise and assistance. Finally, 1 thank my
dear wife, Sandy, for her understanding and moral support
for me during our AFIT assignment.

Steven E. Johnson

il

S gy *

D O n. MO y 0w ’:\: Lt
'n‘ la !) l!\ " ..'A h .ﬁn i "' “'o 't.‘o‘ 'o"'t‘.‘n ¥ ,:'iq' 'd‘. W 0“' W 0 A 0 ‘ RSN ,u l"‘o gty (H ‘0‘|’ -'0 8 ;'l X

mvw"rlﬂ
(Y
. Table of Contents
“
Page
n Preface . .« . « « « o 0 0 0 0 0 e e e e e e e e ii
- LList of Figures+ « « + v « « v v e e vi
Nﬁd
- List of Tables . . v v v v v v e e e e viii
n_* Abstract 0 0w e e e e e e e e e 1x
e
(WY
1. Introduction . . e e e e e e e e e 1-1
o) General Issues e e e e e e e e e 1-1
Background . . e e e e e e e e 1-2
Statement of the Problem e e e e e e 1-8
v Scope................. 1-8
‘;_‘.‘ Assumptions . e e e e e e 1-8
= Research Approach e e e e e e 1-9
o Equipment and Software . . 1-11
‘&‘- Sequence of Presentation 1-11
IT. Review of the Literature o e e 2-1
fr Human/Computer Interface 2-1
V. Interfacing with a Mouse 2=7
SUMmMATY + « ¢ ¢ + s e 4 e e e e e 2-9
r
. III. Requirement Analysis for a Structured
Analysis Tool «+ .+ .« . . 3-1
- Hardware Support 3-1
> Software Support 3-2
ol . . .
wt Existing Requirements from
Previous Studies« . .+ . . 3-2
! Requirements for the Follow-on Tool 3-1
W Summary . . .+ v v e e v e e e e 3-6
CI'
A
]
l*'
LY
‘i
Md
3
“
v
g
v 111
;\
7:‘:

AS
"

=g

R o= i

et)

s SRR

.

T

[]
= e

;’..L R

a

==

%

i U f‘v“
N S v 5 *. l’ .I'. W, ..Q.‘" % i"‘t 'r‘ (X 0" (% . l.“i Yo “'ln“h“‘o ‘70 ! WS, '. ’(‘ h

Iv.

VI.

Screen Layout e e e e e
Menu System e e e e e e e
Voice Feedback

Data Structures e e e e e e e

Primary Data Structures .

Data Dictionary Information Derlved

from the Graphlcq Information.

Data Files . . e e e e
Coding Approach e e e e
Testing Approach . ., .
Summary . . . e

SA Tool Operation and Evaluation

Operation
Initialization . . .
Graphics Functions .

-

Data Dictionary Functions

Facing Page Text Functions
Input/Output Functions .
Miscellaneous Functions .

Evaluation Results

Evaluation Methodology

Evaluation Conditions
Evaluation Results .
Summary e e e s e & s

Conclusions and Recommendations

Conclusions e e e e e e
Recommendations e e e s
Small Scale Pro,jects
Large Scale Projects

1v

“»

Lkl)

Design and Development ot the SA Tool
Hardware Considerations
Software Considerations
Previous Study Considerations .
Human/Computer Interface Considerations

" BRSNS I
J.;:". ' 1%

.

L]

-

¢f“'?

ol (e

4-1
4-1
41-2
4-3
4-3
4-4
4-6
4-9
4-9
4-10
4-14
41-16
4-17
4-18
4-19
5-1
5-1
5-1
5-2
5-4
5-5
5-5
5-6
5-7
5-17
5-8
5-9
5-12

[o20 ez Mo <2 I«)
[
L IN DN =

;"‘*w

m'yx*a

.I .oln

L)

\-'\‘l

i

. Appendix A: AFIT Structured Analysis Syntax . . . A-1 p!
< SADT and IDEF, . . . A-1 3
- AFIT Structured Anal)‘;ls Dlagram S\ﬂfd\ A=}
Subset of AFIT Syntax Implemented . . . A-4
l Data Dictionary Formats e e e e e e A-6
Facing Page Text Format e e e e e A-11 N
g\ Appendix B: Example Outputs B-1 g
L
LY
Appendix C: File Format Definitions -1 3
PN Appendix D: Configuration Guide D-1 >
! .
_ Appendix E: Summary Paper o . E-1)
H’ \
. Appendix F: Requirements Analysis Diagrams F-1 '
g Appendix G: Structure Charts G-1
™
Appendix H: Thesis Software . . . + « « « « « « . X “‘
& Appendix T: User's Manual e e e e e e e e e I1-1 A
“ Appendix J: Reference Manual X
'i
4
{" Bibliography BIB-1 y
i Vita o o v 0 o s s e s e e e e e e e e e e e VITA-1
) ¥ This appendix is contained in Volume II of the thesis. N
” This material is maintained by the Department of Electrical -
N Engineering, Air Force Institute of Technology. N
[
. N
3
“ *
{
} |
X K
Jl‘ “3
o .
b 2
e
. v .
L -
£ |
by W N " & { “.r'.r‘.r‘.".r‘.r N
i' " 0.0 " s !0‘ '\‘. ..l; "' ‘.'o h“ 0.‘ h‘. g "‘;‘. K 0 o‘. "0."0‘ () 'I.\ n'o'.'u e .'0 il y W’ My A > e :

-

%

B TS P v

-
¥

FAR

;"-‘."- J

L

|

.

B SR TR E

=2

RS

&

=)

~
a

P

z
8=

10.

11.

12.

13,

14.

15.

16.

17.

Design Principles « v e e e e e e

RADD Human-interface Requirements .

SA Tool Screen Layout e e e e e e
SA Tool Menus et e e e e e e e
Example Group of Lines

Resulting Linked List Structure . e

Example EKvaluation Format

Evaluation Questions
SADT Language Features
IDEFO Graphic Syntax
Graphic Notations Unused by IDEFO .

Implemented Graphic Syntax

Format of a Data Dictionary for Activity

Data Dictionary for Activity
Format of a Data Dictionary for Data
Data Dictionary for Data
Facing Page Text Format

Correctly Formatted Facing Page Text

Example ".gph" File

Session File Qutline

Example Session Header
Vi

5.5

.,,
'
Al

L
rd

4

A

B
x.

>

B

.
o".-\t w:a!:‘ ~'-. AR SRR T
ot ' \,,.N_. - jﬂhﬁ- \“'\‘:-.{-:.

NG s w u‘v. -
dﬂo’ q' W RO g "&:‘ W‘*ﬂ?’f;&\ﬁﬁ‘}ﬁ\‘wﬂ“{vx SRR

\t .0

List of FKFigures

-~

i Figure Page
1. Example SADT ¢ ¢« v v v ¢ o e o+ e e e 1-4

g; 2 Components of the User Interface 2-2
3. Design Principles e e e e e e e e e e e e e e 2-6

?‘- 4, RADD Human-Interface Requirements e e e e e e 3-4
i‘ 5. SA Tool Screen Layout e e e e e e e e e e e e 4-4
-~ 6. SA Tool Menus « + « v v v« e 0. 4-8

d 33 7. Example Group of Lines 4-12
: . 8. Resulting Linked List Structure 4-13
g: 9. Example Evaluation Format e e e 5-8
2 10. Evaluation Questions 5-10

E o 11. SADT Language Features« ¢ ¢ ¢ + « « o o« A-2
& 12. IDEFO Graphic Syntax « « ¢ .+ < o+ . . A-3

. 13. Graphic Notations Unused by IDEF, A-3
R 14. lmplemented Graphic Syntax A-5
. 15. Format of a Data Dictionary for Activity A-17
! 16. Data Dictionary for Activity « . . A-8

ig 17. Format of a Data Dictionary for Data A-9
. 18. Data Dictionary for Data+ . . A-10
:' 19. Facing Page Text Format e e e e e e e e e e e A-11

20. Correctly VFormatted Facing Page Text A-12

Poma

21. Example ".gph” File « « .« .« « .+ «+ . . C-2
i: 22. Session File Outline+ « .« + « . . C-5
. 23. Example Session Header + . . .+ . . C-6
fw
7 vl

2
4

ez

R |

l/’.

AN

oY r‘:}‘ "-‘

s),

-y
-~ £

A GRAPHICS EDITOR FOR
STRUCTURED ANALYSIS WITH
DATA DICTIONARY SUPPORT

I'. TIntroduction

General Issues

This research effort was part of the continuing
research in the field of software development conducted at
the Air Force Institute of Technology (AFIT) by the
Department. of Electrical and Computer Engineering. In
conjunction with this research, the department has
established documentation standards to support the
requirements analysis phase of the software life cycle. The
documentation includes structured analysis diagrams and
data dictionaries. The structured analysis diagrams use a
syntax derived from Structured Analysis and Design Technique
(SADT) (SADT is a trademark of SofTech, Inc.)

Two past theses led to the concept of integrating the
structured analysis and data dictionary documentation
standards. In 1984, an AFIT thesis by Charles W. Thomas
suggested data dictionary information could be obtained from
graphic pictures (Thomas, 1984:11). In 1986, an AFIT thesis
by Jeffrey W. Foley developed a data dictionary editor for

the Zenith 7Z-100 computer (Foley, 1986:3). This editor 1is

capable of creating and editing data dictionary information

 Joah

.
[

’

o T

r
e
ataln

b

U
’ l' -.a

Ja

Al o
] >
",:' a"’l’i" (i

L4

&

and putting the information into a database which is stored

on a central computer system.

This project is a direct follow on to the 1986 thesis
by James W. Urscheler. He created an initial version of a
tool (nicknamed RADD for Requirements Analysis tool with
Data Dictionary) that allows a user to interactively create
and edit structured analysis diagrams while extracting data
dictionary information from the diagrams (Urscheler,
1986:3). By integrating these techniques into one tool, the
software analyst’s work is reduced when creating data
dictionaries and structured analysis diagrams.

Tn conjunction with this effort, another thesis was
conducted to design a central database that will standardize
the data formats for software engineering tools (Connally,
1987). Thus, a criterion for this thesis was to develop a
data format capable of interfacing to this central database
as well as storing complete data dictionary information and

structured analysis graphics information.

Background

SADT. SADT is the name of SofTech’s methodology for
doing requirement analysis and system design. 1t was
first published in 1977 by Douglas T. Ross of SofTech (Ross,
1977). The methodology was found effective when applied to

"a wide range of planning, analysis, and design problems

IR AR CO R SRR PR R
N

-

(2

AL M A

R g S P I v SN P et A T N T N Ta Y b NS TN
RV P T N ¥) ¢ . oo A
'y " (il "‘ ‘(<£ I R L LRI} 2 2 . u.. v A "' 4 2)4 .Ov\.:‘u'.i"':,‘ » .', .."\ N "‘ A ‘ A e a'a .- 5 Q‘ "

{7

involving men, machines, software, hardware, database,

" h

o e

L
.

communications procedures and finances (Ross, 1977:17).

SADT provides techniques and methods for:

s 1. thinking in a structured way about large and
fj complex problems;

2. communicating analysis and design results in
\.‘\; clear, precise notation;
(S
) 3. controlling accuracy, completeness, and
tf quality by procedures for review and approval;
5

4. documenting the system analysis and design
~ history, decisions, and current results;
N

5. working as a team with effective division and
‘- coordination of effort; and
™ .
- 6. managing development projects and assessing
. progress {(Softech Inc., 1977:1-1).
"o
- An SADT model consists of diagrams drawn according to
<, a well defined graphical syntax. Each diagram has

accompanying text to assist in the understanding of the

diagram. The diagrams represent a hierarchical outline of

the system. According to Softech

.

s -_-
s
4« s

Each lower-level

diagram shows a limited amount of

detail about a well-bounded subject.

diagram connects exactly into the mode
represent the whole system, thus prese
logical relationship of each component

Further, each
I to
rving the

to the total

-~ system (Softech Tnc., 1976:2-6).
- Figure | is an example of an AFIT SADT type diagram. SADT
t‘ models all systems in terms of the system happenings, or
s
activities, and the system objects, or data {(Softech Inc.,
1976 :2-5). Softech SADT methodology calls for the
",
»
i
~ 1=
"
®
hS,]
s e L e e R e g Y e N e e e o e 2 e A
DA e D ol ot K 4 N . 3 i) -'I Lo i) Bl ot B af a0 aA L L afl il uih

L i e e aam e s dada AR Al Sl aa aid 1ol dan el ot shaieade A tie Mle Al bie At adea Ak dekdab daloins Al el b AN S AL A A

e TS

g

-

n

e AUTHOR: | DATE: 1{/19/% |READER
PROJECT: ECS (pw! REV: 1.9 DATE

b=l

2 Srerhp

Iyt { Mo
roc - Addresgle) Inguts &

ul .‘i = r .

PR |
:

|26

. R
. NOOE: TITLE: . NUMBER:
;: A2 Get Inguls

Figure 1. Example SADT Diagram

2

decomposing of both the activities and the data

o]

¥ 1977:19).

=

The graphical language is designed to

Ay

vocabulary (Softech Inc., 1976:2-6).

Inc., 1976:4-5).

1. expose detail gradually and in a controlled
manner ;

2. encourage conciseness and accuracy;

3. focus attention on module interfaces; and

4. provide a powerful analysis and design

i’ ad

;3-{

o independently of each other (Ross, 1977:19).

. The language used to construct both types of SADT
diagrams consists of 40 graphical type features and

,-\,

-

principles. The language has two components: English text
and graphical constructs. Combining the two components

provides the function needed to provide communication (Ross,

Rectangular boxes and arrows are the primary graphical
constructs used in making an SADT diagram. The boxes
represent the decompositions of the parts of the system.
Arrows are used to describe how the boxes interface between
each other on the diagram. English text is used to label
the boxes and the arrows and define their meaning (Softech
Tnc., 1976:4~-4). According to the Softech definition

Input data (on the left of the box) are transformed

into output data (on the right) by the activity

represented by the box. Controls (on the top)
govern the way the transformation is done (Softech

Arrows do not represent a flow of control, rather, they
describe classes of data. One arrow can represent several
-5
it % " BRI _... . Yy R ._\ql-..
’ a-_fl'nmu-:w o , ot -m ﬂ,-r RO =3 x'., e .'v-g‘\ e - ~“-"'«1\.-'i\ e

N

.r

-~

NP ¥

s

Sl

i AR

T

i vt 4 28]

“w

\

-". ‘

Ay Yy ow

]
e*2'a

- .
o

D o
aa

L e 2

Y

[y

classes of data; this is referred to as a pipeline. The
label for the arrow must precisely describe the contents of
the pipeline (Softech Inc., 1976:4-7}.

Applying the SADT methodology allows teams to
effectively work together. As part of the process, the
authors distribute drafts of the SADT diagrams and
supporting documentation to interested parties. This
process, called a peer review, permits the parties to review
the drafts and make written comments to the authors. The
author then responds to these comments. This process
continues until all agree that the model is complete.

The reader is referred to the 1977 article by Douglas T.
Ross for a more definitive description of the SADT concept
(Ross, 1977).

IDEF5. The U. S. Air Force Program for Integrated
Computer Aided Manufacturing (ICAM) adopted a structured
graphic technique called IDEFO (ICAM Definition Method
zero) ., IDEFO is a derivative of SADT, tailored by Softech,
Inc. for ICAM. It is the function modeling technique
applied to all 1CAM projects (Smith, 1981:1). IDEF, was
developed to give a structured approach to applying computer
technology to manufacturing and to enhance the communication
and analysis of the people involved in improving
manufacturing productivity. A detailed comparison of the

SADT and IDEF, syntaxes is found in Appendix A.

(" , “ .an ._'.A_f.PI . N "‘\- N '\.‘ o 0 e) \.‘ - ;N“' - .‘."» ” ,_}\1 '&‘ " ﬁ‘ .,‘- » . L ‘31 ."q ,'- *’- _I N ‘Nq _‘.\ BURN | ~ R " _-‘-_F_»- “.r\.‘ \-'_‘
» > N) I » -
& .".‘Mo .. A - ‘t‘c fANlh 1"1’ ‘-l’* VN <, T, » of

AU A ORI OO W "..4'0 (XU X .‘.L WP ANS

s 2 1w 2t ')

- -l N

L s e = e e s

P o o |

-
A

e i I N g

T

Data Dictionaries. The purpose of a data dictionary

is to manage and document a valuable resource, data. Using
a data dictionary system properly provides measurable
benefits to an organization (Lefkovits, 1977). Ten areas
that benefit from an effective data dictionary system are
listed below.

Reduction of data redundancy

Reduction of system development costs
Enhancement of the system maintainability
Improved impact of change assessments
Enforcement of data standards

Improved information for data base creation
Improved Communication between people
Better auditing of use of data

Reduction of Administrative Effort

Creation of trustworthy information (Lefkovits,
1877:1-8 thru 1-11)

O WO & LN

s
-

The AFIT methodology for including data dictionaries
with the requirements analysis is supported by Leong-Hong and
Plagman. They said,

' The use of the DD/DS (data dictionary/directory

y system) in requirements definition and analysis is

critical. The DD/DS provides a framework in which

the end-user and the analyst can communicate with

each other using common terminology and

definitions. Communication between the end-user

and the analysts, between the analyst and the

b designer, and between the designer and the

' developer is essential in building a system. By
maintaining consistency in the data used,
potentially disastrous conditions caused by
inexact or inconsistent data can be averted
(Leong-llong and Plagman, 1982:34).

Leong-Hong and Plagman identified yet another benefit
that the data dictionary gives the requirements analyst, that
! of maintaining documentation. The data dictionary maintains

descriptions of the activities and data needed for each

N T N L s 4- RO
o . R B Tt
‘\ o s .'. " = A

A T e,
r‘io ()

SOGU A ML

Lokl abd adh bl aba o 2 N8+

¥
Y

e,

o

-
[]
.

vy

T g s 8

T S
hy !!o W

| A

h N
LA

L’)

s

..

P

-
Wy 'l. "\ o

activity. From these descriptions, documentation regarding
the effect of activities upon each other is readily available
(Leong-Hong and Plagman, 1982:41-43). The authors further
recommend an automated data dictionary system for producing
documentation to reduce the monotony and repetitiveness of

the task (Leong-Hong and Plagman, 1982:50).

5]
; ('"
-~

|
I

ent of the Problem

The purpose of this thesis was to integrate the
structured analysis and data dictionary techniques into a
CAD tool to attempt to make the software requirements

analyst’'s job more efficient.

Scope

To make RADD useful, the requirements and design of the
RADD prototype were analyzed to ascertain the changes and
additions needed. The software to effect the changes was
designed, coded, and tested, and the usefulness of the new
version of RADD was established by a formal evaluation using

questionnaires and statistical analysis of the responses.

For the purposes of this thesis, the researcher made

four assumptions. These assumptions are listed below.

-y - . Al e 'y
(-rf-f WO \..w'\”""':’\}.‘x\ﬁ,,f,,,-,\ﬂ-.;-.-_.-.

onw’n‘d‘iccl."".'r 1 Y, Dl Dl

1. The users of this tool are AFIT graduate
students and faculty.

2. The users of this tool are competent in the
use of computers.

3. The users of this tool are familiar with the
structured analysis methodology and uses of
data dictionaries.

4. The requirements analysis methodology used is
described in AFIT’s Software Development.
Documentation Guidelines and Standards
(Hartrum, 1986:8).

Research Approach

This research was accomplished in three phases. In the
first phase, the current requirements analysis for RADD was
reviewed, followed by a review of the design and
implementation of RADD. These were updated and changed as
necessary to reflect the new requirements and design of the
new tool. Next, the reusable parts of the RADD software
were extracted and new code written to implement the changes
deemed necessary by the analyses, Finally, an evaluation of
the new tool's usefulness to a software analyst was
accompl ished.

Part of the first phase was to review the requirements
analysis for RADD. This was necessary because the initial
version of RADD needed improvements to become usetul;
therefore, requirements for the initial version of RADD were
not complete. The requirements analysis for RADD was

described textually in Chapter Three and graphically by

structured analysis diagrams in the Appendix of the

oSy, l: t B

PR

e
[N

o e
v e T e

W"
YN

b1
PP
e 4 S

L, s, 84, -

L s e e s e aa bl ia a ga et Bat e det aad b Acl el aal Al Aok Al At ad e d-af'a da diadle ate Lin ate gty AU ale Al Ale Sh il Ake Al ake i AR Ak A el Sallake . |

Urscheler thesis. In performing this analysis, i1t was

-,

‘} necessary to analyze other structured analysis methodologies
; n to define a suitable language for the AFIT environment..
3 From this language, a minimum suuset for the new structured
l ‘;'- analysis tool was identif ed.

’ Also during the first phase, the design and

- implementation of RADD was analyzed. This was necessary

f';: because RADD was not completely useful. For instance, in

it addition to expanding the language implemented by RADD, it

;;: was necessary to permit printing hard copies of the

o structured analysis diagrams. Furthermore, design issues

Q such ag extensibility and maintainability were considered.

b The design of the database was examined with regards to the

) central database management system being designed for the

\: AFIT distributed design environment. After completing these

" analyses and identifying the necessary enhancements, the

> second phase began.

. The second phase was the development of the software.

"

. Using a top-down approach, the modules were coded and tested,

E‘ integrating the system in the process. All software

= conformed to the standards set forth in AFIT’s Software

S

R Development Documentation Guidelines and Standards pamphlet

:.: (llartrum, 1986).

The third phase was a formal evaluation of the

i' structured analysis tool's usefulness to a software systems

.‘;_ analyst. A likely pool of analysts, familiar with

pS =10

y

ax

P o P "A A

a."a

RENN

v

[

structured analysis and data dictionaries, was drawn from
the students and faculty of AFIT’s sof'.ware enginecering
classes. These people were polled using standard
questionnaires (Foley, 1986). The results of these
questionnaires were compiled and analyzed with statistical
methods, establishing the tool's usefulness to the AFIT

saoftware systems analyst.

Equipment and Software

The equipment and software for this thesis were
available in ghe Information Systems Laboratory of the AFIT
Department of Electrical and Computer Engineering. The
computer used for this thesis is the Sun 3 (Sun is a
trademark of Sun Microsystems Inc.) workstation. This
workstation runs Berkeley UNIX (UNIX is a trademark of AT&T)
version 4.2 and features Suncore graphics and the Sunwindow
environment.. The software developed in this thesis was

written in C.

Sequence of Presentation

This thesis consgsists of six chapters. A literature
review of human/computer interface issues is presented in
Chapter Il. The requirements for the new tool are presented
in Chapter I1T. The system design is presented in Chapter
IV, Chapter V is a summary of the implementation and is a
statistircal analysis of user reaction to the tool. Chapter

VI presents the researcher’s conclusions and recommendations.

R o SR . RS N e e
I\If II~‘~' f\ .'"4"’1,"\" L L9 ¢ S Ny (\,'a,f" '/‘.ﬁ'{.‘,-,-, f‘ J' ", f ‘ .\I‘ ". ‘\"
¥ o N Rt A\ By (A 8 LW T X

R_r_ st

“‘-"“t“l'

II. Review of the Literature

Introduction

The purpose of this thesis effort was to build an

™ interactive CAD tool. It was imperative that the researcher
* understand the issues that impact interactions between the
" computer and the user. Since the human/computer interface

1ssues were deemed critical to the success of this effort, a

v v al

N

review of the literature was conducted to gain the knowledge

needed to design the human/computer interface for this tool.

T

lluman/Computer Interface

oy

A computer system’'s effectiveness is directly related

to how well the user and the computer are able to

=

communicate with each other. Newman and Sproull noted it is F
ﬂ% the design of this user interface that "... has a
particularly strong impact on the program acceptability as a

whole” (Newman and Sproull, 1979:443). The importance of

o the human/computer interface was further amplified by Robert

W. Bailey. 1lle said:
“‘ . . -
o Not considering human performance in the
) human/computer interface frequently results in
large numbers of errors, requires huge amounts
o of training time, and causes user frustration
! and dissatisfaction (Bailey, 1982:293).
;- Because each user has a different background and
"
experience, the process of designing the user interface is
X difficult. This is further complicated because a
Y
e
S

a3 IR

o~

"::.. :;

Lo% |

s

a2

~

universally accepted method for designing a human/computer
interface does not exist (Woffinden, 1984:15-16). As Foley
and Van Dam noted

Like architecture, the design of user interfaces
is at least partly an art rather than a science.
We hope that the design of user interfaces will
someday become more science than art, but the
climb to reach this goal is long; the ascent has
begun, but there are many hard traversesg ahead
(Foley and Van Dam, 1982:217).

User Interface Components. Newman and Sproull (Newman

and Sproull, 1979:445) divided the user interface into four
components. Figure 2 enumerates these components. Since
the names of the components do not imply their full meaning,

a short discussion of each follows.

1. User’s Model
2. Command Language
3. Feedback

4, Information Display

Figure 2. Components of the User Interface

The user’s model is "the conceptual model formed by the
user of the information he manipulates and of the processes
he applies to this information"” (Newman and Sprouil,
1979:445). In other words, it is the way the user thinks

and understands the program to work; therefore, he is able

to devise his own strategies for operating the program.

e

Ch A

y

el

- w .
LI

t

Thus a good user model is characterized by the user
understanding the purpose of each input he gives the
computer rather than blindly following the user’s manual
instructions. The user’s model should present objects or
phrases that are familiar to the user and simulate the
modeled environment. "The use of ftamiliar concepts makes
the user's model more intuitive and easier to learn” (Newman
and Sproull, 1979:448),

Next.,, the user needs to know the command language to
use the model. Designing a command language involves
recognizing that all commands relate to each other and
together they define a syntax for the language. In addition
to syntax, the semantic value of each command must be
considered.

Newman and Sproull reported there are four issues that
further complicate the design of a command language. These
are

1. Command modes. Allowing the same user input

to be interpreted in different ways depending
on the current mode.

2. Selection sequence. Usually an operation must
be selected in addition to selecting an ob,ject
to operate on. Which comes first has an

effect on the number of command modes.

3. Command abort mechanism. Commands requiring a
sequence of inputs must allow for retraction
of the command in the middle of the sequence.

1. Error handling. It must be decided how to
handle erroneous or meaningless commands
(Newman and Sproull, 1979:451-452).

e e Al S0a b - S BA A Th i S~

4

o
. 1)
|
1 e Another dimension to the user interface design
N
”~ complexity is the number of possible input devices
‘ available. The designer must be consistent by making the
user operate the same iant device for each command.
:: Feedback is required to let the user know what is going
on in the program, and should be given quickly. According
g to Newman and Sproull, three important forms of feedback are
{j 1. Feedback by informing the user if a command
e has been accepted, or if an error has
occurred.
A
E' 2. Feedback that the correct object has been
selected.
:; 3. Feedback such as cursor feedback, character
e echoing, and so forth (Newman and Sproull,
N 1979:464).
e Information display is the final component of the user
i interface. The flexibility given designers by graphical
devices poses a problem in determining an effective means to
ﬁ} display the information. These problems have fallen into
u two categories: overall layout and representation of
N objects. Screen space is usually at a premium and what is
~ pertinent for display at a given time must always be
.‘:.
evaluated. On the other hand, if user controlled windows
r..
:J compose the display, the burden of arranging the display can
. be shifted to the user (Newman and Sproull, 1Y79:460).
e Newman and Sproull further suggested that the quality h
w of the graphic display forces the designer to make trade-
) offs. The designer must decide between the amount of screen "
.. 1
oy 1
i 24
. -
1

459

Sy

laEY

K

oh

2
x4

"

A |

P
L)

space taken and the amount of detail necessary for a given
image (Newman and Sproull, 1979:462).

After studying the components of the human/computer
interface, various general user interface design principles
were researched.

Design Principles. As previously stated, a universally
acceptable method for designing a human/computer interface
does not exist; however, experience has led to the
documentation of certain design principles. Figure 3 is a
list of principles by four different authors for designers
of interactive programs. It should be noted the principles
encompass all four components of the user interface. Also,
the list given by D. S. Woffinden was derived from works
including those of the other three authors on the list.
Woffinden found these guidelines incomplete. He said:

None of the lists of general design guidelines

studied were found to be completely satisfactory.

Many seem to have become over concerned with the

human issue and seem to fall short of giving

guidance revelant [sic] to the complete design

process for an interactive system (Woffinden,

1984:19).

Figure 3 shows that each author views human/computer
design from a slightly different perspective. Nonetheless,
Foley and Van Dam asserted it is important for the designer

to consider these design principles if a satisfactory

interface is to result (Foley and Van Dam, 1982:218).

-"ll Lol g kol aa ol el ah aas mie Al aa Afe 4 e & e 4l Boloa A Bl aas Sae Aecofatds oid oah ade Aok atlb Ak S-Sl Bk il Aok M o8 hddier AMAta AMESRAR AR S Sl Nk Sl Sl Sad ek Aot

et |

e

#a044s 3yudioryuy

JUIPETHUOD ayY

£1yud

TBA UOIYDI[a8 as()

avuatrgadxa jo
B[2A3][9)8pOom@WOIDY
Buturvway azimiydgp

UOTIN[OAD
J0j ugiIsa(

uotryeaado
a1l JO JUIBUOITAUI

3y JapIsuo)

23¥naugy] aowjaadulL
9Y) utwada(

510730%)
uwvuny JapLsuo;)

arquerivas
B2OINOS3aA £JrLyuapg

498N 2y} MOUY

moy 88 oY) Jo
esodand aurwia’yoq

RAL

(02 :vu61

‘uspurjjoM . 822-¥2 :1L61 ‘uasuwy,
‘BE£Z-222:%861 we(uBp puw £9[0y;
$662-1062 12861 ‘Aafley, lwouay kuacv<q

sa[dioutdg ugisa(

Ay 1adaqul
AINJONIYE wv)B(]-
. Louvpunpay-
BUOINDY VD [QIBADAIY—

840443 uowmod
N0 asaul gujl-
BOFUBEIW JOJLD pPOOLH-~
SJ0JJdY JOJ J3UTFuy

sJoyowuvIud
pUBUWoOD IYZTUYFI0IY -
LJowal afosnp-
vIj4a3ul Lejdsiq-
guotjvaado uowwmoo
JO uor)noaxa pidey-
suotleladQ azitmrido

uorjvmiojuj
WwoI8AS 0} S8S300Y-—-
Jo01Awyay
31qu10Ipaad-
HJIIQUEWNN 10U BoWBN-
£13uyg 30U UOTYII[IY-
UOTIBZIIOWI IZIWIUIY

198[) 9y} Mouy

uasuvj]

9] tl

N

we(uvBp puw £o]104

‘g oandry

suturuag],
UO1938Z1I0Wd| az1u13do
OZ1WIUIY
Jul [puvp
JOJdAY guryue)iriony
puuw A0wandoy
J08) vaoadu]

fuydsiq

oYy vanonangg
AOUalsrI8UO)
J0J ugisaq

pawaojuy
194} oy} deay

awil], asuodsay
[01)U0))

ajdoag £q sumig
Bui1ssanodd SZTWIUTIY

S8J0IdY IVVPOLWOIIY
pue dnyjoeyg moj |y

£OUI)SLEUO))
utujuleay

waysLg
oYy uawvor
a8 ayy djon

1043U0)
J98() ans8uUy|

X9 U0
puy Lyt1at1y0y ‘aasn

HOuQPadd 9ATH 9y} puw)saapuy)

£9] 1uy

A

ERRAP A A

R T NI
- .- .
& "H‘.-p-‘--!' . -_‘.-.

e,
Pl ol
Mgyt R Gt

S

" e

Interfacing with a Mouse

Increasing the number of different input devices
increases the design complexity. Since, in this project,
the mouse and the keyboard were used for input, it was
important to consider the i1ssues surrounding human/computer
interfacing with a mouse.

Lynne A. Price considered it practical to use a mouse
in CAD programs because of the following six advantages:

1. Mice allow control of the cursor through arm

motion natural to pointing.

2. A mouse gives the user the ability to point
and to invoke several functions with one hand.

3. The mouse allows cursor position to be
controlled by software somewhat independently
of the user’s hand motion.

4. The mouse permits the user to remove his hand
from the pointing device (e.g., to use the
keyboard or answer the telephone) with no
change in the cursor position on the screen.

5. The pads required by optical mice are light,
are easily moved, and may be placed on top of
normal desktop clutter.

6. Mice are convenient for both left and right
handed users (Price, 1984:288).

Price conducted four experiments to test the
suitability of the mcouse as a pointing device for CAD
systems. The experiments involved pointing the cursor with
the mouse at graphic items and clicking the buttons. A
mechanical, three button mouse was used for the first three

experiments (Price, 1984:288-293).

" ") v -44-) --- l.-- -.-..- ‘; o
.J.“~‘ < f-,;ﬁ” o ~¥f~f Ly r v wﬁ._ Gr 4~M e v x,fk Fole F \ o . f \¢_ R q{‘h * ’P\

‘..<.‘.". DN Al alal s \l.l.

i
—

Yy

EM\

LA

AR

P]
B <k

{a

N
0
Yt

{0
. ":‘I‘:‘t'h\'. -0.-'u¢1

The first experiment tested forty-two individuals’
abilities to use the buttons and control the cursor
position. Errors occurred more frequently when the number
of buttons involved increased and when the mouse was wmoved
while buttons were held down (Price, 1984:289).

The second experiment attempted to determine if
different numbers of clicks of a single button or use of a
different button to indicate the same input decreased
accuracy and caused more errors. No significant difference
was observed in the time to complete comparable experiments
or in the accuracy between the two methods (Price,
1984:290).

The third experiment attempted to determine if the

decrease in performance noted in the previocus experiment was a

function of the time allowed the user to begin the second
click. In experiment two, the people were required to enter
the second click within a half to three-quarters second of
the first click. In this experiment, this delay was varied
up to one half, three-quarters, and one full second. Price
found as the delay time was increased, the difference in
performance became less significant (Price, 1984:291).

In the final experiment, a different style of mouse was
tested, one with two horizontal rocker buttons providing
four distinct inputs. No significant difference in
performance or accuracy was identified for any for the

variations tested; however, a large majority preferred the

N AT Vi R T I R L T i O P A U T S R T
L Y PR EANE e T T e AT T A T L T .
e Y h S e Wy e P e LUd S PR e P AT AN T

a0 4 X v e

me L ol b ok A
1

&
L
o, variation that most closely simulated the previous style mouse. -
b Price concluded that people prefer using one finger for each l
‘ different input and that a mouse with vertically configured :
buttons is preferred (Price, 1984:292). .
‘&: Overall, Price concluded the differences in performance .
and accuracy identified in the four experiments were small i
‘- enough to justify using more complicated input techniques E
; when the number of different inputs exceeded the number of ‘
’ available buttons. She also noted these more complicated
E techniques would cause a large software overhead for the 2
N designer by requiring a check for multiple button clicks and %
N
‘ by requiring a check for user input errors (Price,
: 1984:293) .
Summary VE
The purpose of this literature review was to assimilate 4
: the latest information that pertained to the i1nterface ;
A between a computer and its user. Information was gathered -
to review the components of the interface and the design ~
. principles one should consider when constructing a i
f human/computer interface. Also, because the tool i
- constructed by this thesis effort used a mouse as an input -
. source, information on experiments to test a mouse’s 3
i suitability for the tool was studied. After gaining an K
understanding of these critical subjects, the researcher
Z based requirement and design decisions on the foundations ?
- learned here. ::’
(
2-9
N
! .

LR W Wl W \”‘...‘_‘.-_:. -

ST SRR e
e L e T

(123

[

) [1T. REQUIREMENT ANALYSIS FOR A
STRUCTURED ANALYSIS TOOL

nj The issues constraining the requirements for this tool
” are sorted into three broad categories. The categories are
(-

avallable hardware support, available software support, and
E: existing requirements based on previous studies. After
fal

considering these constraints, the requirements specific to

-
%: the CAD tool are identified.

N

."\¥ tfiardware Support

.. Because this tool 1s to be integrated into the AFIT
)

. computing environment, it is necessary to consider the

R}
']

restrictions the environment poses on the tool. Currently,

the computing environment consists of several mainframe

YT
E I)
(3

computers and many stand-alone workstations. The primary

mainframes are two VAX 11/785 computers (VAX is a trademark

"

of Digital Equipment Corporation Inc.) running the Berkeley

L: 4.3 UNIX operating system.

-

- Access to the mainframes 1s availlable through the use
Ei of the AFITNET. This provides the capability to connect to
~ the computers with a home computer over the telephone lines

(AFIT/SI, 1987). Also, there are Zenith 72-100 and 7Z-248

-
s

workstations that are able to access the AFITNET. The

.
a

et
I.l
.

AFITNET gives other mainframes and the SUN (SUN i1s a

Coaa

ahHh S

trademark of SUN Microsystems) workstations the capability

to remotely login to the 11/785's via an kEthernet cabile.

Software Support

ity
.
»

As discussed further in the next section, a requirement ,

already existed that the data produced by the tool be stored

m
» o
-5 in a relational database using the INGRES databasge ’
)
. management system on a UNIX host computer. The capability 3
&)
]
to store the data produced by the tool was developed in
F
fi conjunction with this thesis effort. Thus, there was a
o~ requirement that the software create data files usable by
o
~
< the relational database manager.
g The software used to create the tool was also required :
- ¢
to interface to a graphics package. In the interests of .
. portability, the use of a standard graphics package needed
- consideration. Also, the software needed to be portable to
o other systems. J
A\]
«.E EFxisting Requirements from Previous Studies "
+
:} Data Dictionary kEditor. This computer tool permits '
' users to create and edit data dictionary definitions for the
o
:j requirements, design, and coding phases of the software
»
~ lifecycle. After editing the definitions on a personal
x
~
) .
& computer type workstation, users may transfer the
L . . t
. definitions to the database host via the AFITNET using ;
available communications software. A current thesis .
o~
N
'\ {—4: 3
U
e
x g

~ V) YL YT AN T P O P P PR R R T . . . P Y « R N
3.7 s ’..'ﬂ--f.\'/‘~u s, ’.I‘.“:l-‘_zk. -'(\f e ‘\‘J‘ " 'J‘.‘w"&":“‘ e e N ,'.»’ o ,&1".":-.- ..f“.’\,‘ﬁ.. \J’\ hl"x!“
g9 4 a cadivd) - » A h 3 ' ¢ A + Nandli , ndChe 20}

k. LN ALE Wk) »

s

A

,l..l

ul" .

« 7
’

~TW

-~

R
- N

AV

LI

b.‘- "-

effort will make 1t possible to store the definitions in the
central database.

The data dictionary definitions created hy the odit.
and the tool from this thesis are related. VUtUrscheler
designed the prototype in this manner. He said:

To insure there is a level of consistency, !'he

same definitions were employed in RADD, Ihoee

consistency recsulted i direct tink betweer the

7-100 oditor and RADD at thoe database level

Urecheler, 1986:19).

Thu- the requirement to maintain consistency at the database
level st existed for this thesis effort.

Human/Computer Intertace Requirements. As discussed in
Chapter Two, an adequate human/computer interface is
‘ritical to the success of interactive computer tools. This
thesis effort as well as the Urscheler effort were bound by
this requirement. Figure 4 is a list of the five key
psychological factors Urscheler considered in attempting to
fulfill the human/computer interface for his effort.

Analysis of the RADD human/computer interface by this
researcher found the interface a good one. Overall, the
user feels a real sense of drawing an SA (Structured
Analysis) diagram when using RADD. However, enhancements in
areas specified by the requirements in Figure 4 are needed
t.o improve the existing human/computer interface. The
requirements presented by Urscheler and those established in

Chapter Two were considered in the design of the follow-on

tool.

J‘i‘ N ./'.r.n T R - .{... -
"“%&D “~
ﬁb&ﬂ\\g‘

m-m&“ﬁm.& L‘;Aﬁlm‘fm.; AM&A A mm..hlkmmmhs\ ._;.s: Lol

J R O O P R O S O P P R T T T e

x

l. Keep the user motivated -- do not frustrate or

i ! bore him.

2 Break the lengthy 1nput process 1nto parts to
P . permit. the user to achieve "psychological ’
lf closure”. This provides positive fteedback to
the user through a feeling of accomplishment
and success,
= 3. Minimize the memorization required by the
user.
< : 1. Provide visually pleasing displays on the
! screen. This includes minimizing the
' scrolling and other distracting movements of
3_ ‘ text, the highlighting of instructions to the
} user, and making effective use of margins and
N i white space.
5
| 5. Keep response time to a minimum. Display
. | status messages to keep the user constantly
R) informed of what is happening inside the
" l machine.
’ Figure 4. RADD Human-Interface Requirements
Source: (Urscheler, 1986:21)
Requirements for the Follow-on Tool
in defining the requirements for the follow-on tool, it
L was necessary to analyze the current implementation and
determine how well i1t conformed to the original
3
requirements. Areas of specific interest were the
. human/computer interface, the tool’s functionality, and the
! reusability of the software. Also, 1t was necessary to
:. evaluate the SADT methodology to determine the requirements
l
for a necessary and sufficient SA language suitable for the
" AFTIT software development environment.
;] 3-1 ';:
L
.:‘
¢ 4
“ .
T I T O e T i e T AL Tt P N ot R T I AL ":
,‘fhjffw.‘.:VT?Ttﬂfﬁ?ﬂfﬂT”Vﬂ”*TFf\U}f*\Yﬁﬁf&:ﬂffﬁyfK“H.?j-u}jiffﬁ?}f%}

I'll

{

."
L
LRV Y

L

T

a s
R -.."J

Determining how well RADD complied with 1ts

requirements was dittficult, Being a prototype and given the
time constraint in which 1t was developed, the requirements
analysis did not measure up to those specitfied in the
Softftware Development Documentation Guidelines and Standards.
The given requirements analysis was not decomposed to the
level of detaill necessary to specify all the activities and
data.

RADD 1mplemented a small subset of the total SADT
language needed to satisty the AFIT software requirements
methodology; therefore, a requirement existed to define an
exact language syntax for the tool. 1f possible, it was
desirable to develop a standard consigstent with existing
standards adopted by the Air Force. A study was conducted
to determine 1f such a standard existed and to define the
syntax. Appendix A discusses the results of the study.

In addition to the SADT diagram, requirements existed
to produce facing page text for the diagram and data
diectionaries for each activity and data element. Format
guidelines for these products are given in Software
Development Documentation Guidelines and Standards.

Appendix A also presents exact formats for each of these

products.

\"'A{‘s J

Ny 4
A s

IA' }~.‘ .

-

Summary

This chapter described the requirements for a graphical
structured analysis CAD tool. The requirements based on
constraints from hardware support, software support, and
previous studies were discussed, Also, human/computer
intertface requirements were lidentified and discussed. The

next chapter presents the design decisions based on these

requirements.

P
i
1.,

|

s
«f

P

v, DESTGN AND DEVELOPMENT OF THE SA TOOI,

In the previous chapter, specific requirements for this
tool were discussed as well as 1ssues constraining the
requirements. The purpose of this chapter is to present the
design decisions made based on those requirements and on the
objectives of the thesis. This chapter discusses the design
considerations taken into account dur:i:ng the design process,
the considerations in defining the internal data structures
used, the definition of the file structures used, and the

approach taken to the coding and testing of the tool.

Hardware Considerations

The SUN workstations were chosen because they met
several hardware requirements. First, the SUN workstations
are linked to the AFITNET. This integration with the AFIT
comput ing environment was important because data dictionary
information from the tool is stored in a database that may
be maintained on another machine.

The SUN workstation’s main memory is adequate for
execut.ing the tool’'s program. Because the executable file
is in excess of 1 Mbyte, smaller workstations like the /Z-100
could not be used.

The SUN workstations have a large display monitor that

accommodated the 1ntended screen layout. The i1ntended

screen layout consisted of five distinct areas, one being

-

E} the drawing area that had to be large enough to clearly show
8
all the graphical constructs of the SA syntax.

The SUN workstations provide a mouse in addition to

the keyboard as an input device. The mouse is the primary
input tool for selecting and manipulating the graphical
constructs on the SA diagram because of 1ts ability to
function as both a locator and a pick device.

Finally, the SUN workstations are sufficient in number
and meet the availability requirement. Currently, there are
six SUN workstations available and all are linked to the

AFITNET.

Software Con:iderations

Portability was considered when selecting a software
graphics package. The prototype developed by Urscheler
utilized the SunWindows environment (SunWindows 18 a
trademark of Sun Microsystems Inc.). At the time the tool
implementat.ion began, an implementation of the GKS graphics
standards called SunGKS was available only in a beta version
with the release date of the final version unknown. Also at
implementation time, SUN had released a new version of
SunWindows, called SunView. Given these circumstances and
that portions of Urscheler’'s software could be used, it was
decided to proceed using SunView, attempting to isolate each
Sunview function call within its own module as much as
poss-ble. Also, using an available graphics package ensured

the successful implementation of a complete tootl.

1-2
e I T AT Lo CaiE aE LA - R U S " D . e
e o T A e T ¥ T A o e N i T e .
. 'y " - P S s R R AL B S
gl Lt """ "" o " - ' SN . AR RS - ~

mwmvw"ﬁ Amw=w

ORI

e e -
3 el

. I Lt

2 oAl

u e m
P ALNLNCN

RS

J)J‘

d

4,

Y 134,

A

»

-
D
ateta

N 3

h

—

e N N T e T T T T L L et T T T e e e R g T A2
R e ol el x.‘,:". MRS A ..‘.' A R T it -".‘(*&,ﬁ‘ AT
y . [5 A0 3 Sl A s Wy

This decision limited the language used to C. This
choice did not, however, detract any more from the

portability aspect of the tool.

Previous Study Considerations

Since data dictionary information may be entered into
the data dictionary database from sources other than this
tool (currently the Data Dictionary Editor is the only other
tool with this capability), there were existing constraints
on the field lengths for the data dictionary entries. To
meet this requirement, the field lengths specified in the
Data Dictionary Editor were used i1n this tool.

From Urscheler’s thesis effort, two design decisions
were carried over. First, the window size was kept the same
because it closely represents an eight by eleven inch page
s1ze. Second, the size of the activity boxes was kept
constant. Urscheler’s testing found that user-determined
box sizes led to increased software and data structure

complexity (Urscheler, 1986,27).

Human/Computer Interface Considerations

The importance of an acceptable human/computer
interface was discussed in Chapter Two and Chapter Three.
Te attain this objective, the design decisions surrounding
the screen layout, the menus, and the use of voice for

feedback are pregsented in the following paragraphs.

i LA

Screen Layout. Figure 5 is a picture of the actual

screen layout used by the tool. It was decided to divide
the screen into five distinct areas or windows: the Input
Window, the Message Window, the Selection Window, the

Diagram Window, and the Data Dictionary Window. Each of

INPUT: DISABLED

MESSAGE: WELCOME, Plsase make a selection.

PROJECT: REV DATE

NOOE : TITLE: rujnaen:

Figure 5. SA Tool Screen Layout

s
FR

T

these windows, except the Data Dictionary Window, serves a
unique purpose; the Data Dictionary Window serves two
purposes. The following briefly discussed the role of each
window.

Diagram text is typed from the keyboard and is echoed
in the Input Window, which is located at the top ot the
screen layout. For each input, a maximum length is defined.
Attempts to add to the input beyond this limit are not
allowed. Also, errors are correctable by using the "DELETE"
key to backspace over errors. After typing the input,
striking the "RETURN" key puts the text on the diagram.

The Message Window, located directly beneath the
Input Window, is integral to the user interface because it
is the primary means by which the tool keeps the user
abreast of the tool's status. Here the user receives
instructions on how to proceed with a given operation,
feedback on the results of a particular action, and help
messages on how to resolve a problem that occurred. The
words "Make another selection” are used to indicate that the
current operation is completed and the program is ready to
process another menu selection, The menu system is
discussed in more detail in the next section of this
chapter.

The Selection Window, located directly below the
Message Window, is where the user selects the menu that

contains the next desired operation. Five ovals are laid

r

R

>y
.
v,

.
P

%\.

out in the left-to-right order in which it is anticipated
the user would pick the menus. For example, it is
anticipated the user would first edit the diagram by adding
and deleting lines, boxes and labels. Next, the user would
enter the applicable data dictionary information before
getting hardcopy ocutputs of the data dictionaries, the
facing page text, and the diagram. IFinally, the user would
save the diagram ftor possible future editing.

The Diagram Window is located underneath the Selection

Window and is where the SA diagram is actually "drawn.' In
the Diagram Window the user 1s able to create, delete, and
move activity boxes, lines, footnotes, and squiggle lines.
All of the menu selections for manipulating these and other
graphical entities are accessed by selecting the "EDIT
DTAGRAM" oval in the Selection Window.

Finally, the Data Dictionary Window 1s a dual-purpose
window located below the Diagram Window where data
dictionary information that cannot be derived from the
graphical inputs is entered. The user enters the needed
information from both the keyboard and the mouse. UUsing the
mouse, the user quickly moves the cursor to the particular
field in which he desires to enter the text. The Data
Dictionary Window also displays the current facing page
text.

Menu System. Considering the nature of the tasks to be

accomplished, a menu driven system was chosen because it

1-6

Rt Sl ool Sul dad ol Anlt Sb Al S 0l

bdea o o o

P W NN WY

g 5

o~ satisfied several of the rules for a good user interface.
Specifically, a menu driven system offered the following
! advantages:

2 1. It automatically partitioned the input process
each time the user selects another operation.

,q_ 2. 1t minimized the memorization required by the

~ user.,

}: 3. It gave the user a feeling of control over

T the tool by selecting the next operation.

= 4. It reduced the number of opportunities ftor the

o user to make an error by having to type the '
selection.)

4
Ei 5. It permitted a uniform selection process.

The user chooses a menu of operations from among the

Selection Window ovals. Each oval, except the "RECALL
DIAGRAM" selection, puts a menu of operations on the screen
from which the user selects.

In addition to the left-to-right ordering ot the ovals,
each menu was designed in a hierarchical manner that matched
the functional decomposition of the tool. Figure 6 shows
all the menu selections used by the tool and their
decompositions. The pictures are the actual screen i1mages
seen by a user of the tool, with the arrows on the right of
the menu meaning there are more selections to be chosen.

For a detailed explanation of each of the menu functions,
the reader is referred to the User’s Reference Manual,

Appendix 1 of this document.

P I R) o T Nt - et et I T .'.--..1"-'.-"1'.‘{.-'. JRPII SEREREY
e e P e T e A AR ’:.{\‘_..'.“ -

S lix sSAlalal sl AN

W ot B
Lol K_-hqf‘qf."
Ol r X >

|
|

EOIT Line

EDIT Activity Pox

EDIT Header Info
DELETE Footnote
DELEVE Squiggle

ADD Activity Box
ADD Header Into
ADD Line

L

ADD/CHAMGE foothote =~

ADD Squiggle

|
{

ADD DD

ADD MORE ALIASES
EDIT DO

SAVE DD IN FILE
DO~FINISHED

DISPLAY FPT

SAVE FPT INM FILE |

Make Diagram (Normal)
Make Disgram (Sideways)

Change Directory

Display Directory
STARY New Diagram
Redisplay Diagrem

QUIT (N0 SAVE)

|
—_—
237
!
|
b
-
—

l

Figure 6.

Save for 0B
Save Local

SA Tool Menus

MOVE Line Labe)
Eott TO/FROM Laba)

Edtt ICON Labe)

Redrauw/Delete L1

—J

Change ACtivity humber
Change Activity Box lLocstion

Delets Activity Box

Edtt Project
Edit Date
Edtt Revision
Edit Node
Edit Title

Edit Number

‘Author
Add Project
Add Date
Add Revision
Add Node
Add Title
Number

doundary Arrow

Tunnel Arrow
from ALL
Dot-T/R
Dot_B/L

Arrowhead |

Lﬁnouc :

—_——
Boundary Arrow

Tunnel Arrow
To ALL
Dot-R
bot-L
Arrowhead
Turn=-R
Turn=-L
Sranch-L
Sranch=-R
Jorn-R
Join=L
DORE

ADD fodtnote

Change Footnote Locat'on

Changs Footnots Number l

5. &F

)
.

Sa

oA,

Making a selection from any of the menus i1s a unitorm
process. With the mouse, the user places the cursor over
the text of the desired menu selection. When the selection
is changed to reverse-video, the selection can be made by
clicking the left button on the mouse.

Voice Feedback. This tool was designed to accommodate
a DECTALK (DECTALK is a trademark of Digital Equipment
Corp.) voice synthesizer running version 2.0. The objective
of this decision is to enhance the human/computer interface
by attempting to permit the user to concentrate his
attention more on the Diagram Window than the Message
Window. To activate this option, SAtool must be executed
with a -v option to initialize the DECTALK. A software
module called "put message"” directs messages to either the
DECTALK, the Message Window, or both. Due to the time
constraints, this capablility was installed in the tool, but
not developed or evaluated.

These paragraphs discussed the screen layout, menu
setup, and voice feedback issues in the design of the tool.
In the next section, the data structure design 1ssues are

discussed.

Data Structures

The internal data structures developed for this project
were entirely different from those developed in the
Urscheler prototype (Urscheler, 18986:A-1). Urscheler's data

structures were designed only for the small subset of the SA

T al
o,
-4' -’_- .-/' ,5. ; ‘ ol

LA

[o A AP

0 N 4

A

Be St Y

I .
AN

—"

AL M

PR
F

-.‘-.,
A

A R A LT T

o
Al
a
:;f syntax used by his tool; therefore, new data structures were
needed to i1mplement graphical entities like footnotes and
i squiggle lines. In addition, this researcher's analysis of
b the prototype concluded that the low-level approach of -
b)
[
treating all lines (whether they made up an activity box or

lines connecting the boxes) and all text (whether 1t labels
the diagram, a box, or a line) as the same entity resulted
in increased software complexity. Based on this analysis, a
higher level, object oriented, approach was taken.

This section is divided into two parts. First, the
primary data structures and the information they store are
described. Second, the data dictionary information derived
from the diagram is discussed.

Primary Data Structures. The design of the data
structures was driven largely by the requirement for the
tool to produce one separate file of data dictionary
tnformation that i1s capable of being stored in a relational
database. This requirement led to the following design
objectives:

1. The data structures must maintain both
graphics and data dictionary information.

2. The data structures must separate the data
dictionary information ftfrom the graphics
information as much as possible.

3. The data structures must maintain enough
information to allow the graphics and data -

dictionary 1nformation to be stored 1n -
separate files and later restored from those -
files.

i=10

'. " { “ - "' ’ Cre el ‘-‘.-'._*". f.."-‘_'. -"--:'. A‘-'.I-:"-' "-‘;‘r-."-_,", ,"-‘\.' \..'r..‘.(
\.\.N(L‘f ‘\-N 'fa..i "“‘“;.‘{ay\‘-._.__...‘._. " S e I IO

b

‘,1" :,
s

R

N

From these objectives, five primary data structures

were designed to hold all the graphics and data dictionary
information. The following paragraphs describe each of
these structures and how the data dictionary information
relates to the structure.

The box structure contains the information needed to
locate and label activity boxes as well as store data
dictionary information not derived from the diagram. In
addition, each box structure is classified as such by a
numeric structure type field. All the activity boxes on the
diagram are maintained by using a linked list; therefore, a
C pointer to the next box structure was also defined.

The box structure uses another C pointer to point to an
activity data dictionary structure. This structure saves
the data dictionary information input by the user and is
merged with the diagram information to complete the data
dictionaries for activities. Specifically, the user must
input the description field, alias name field, alias comment
field, version changes comment. field, and related
requirement. number field.

The line structure contains the information needed to
locate, label, and draw the lines as wel] as store the data

dictionary information not derived from the diagram. Each

line is given a numeric structure type that identifies it e

L

and specifies how it connects to other lines. In addition :

P

to the label i1identifying the data it represents, a line may :

<

{

9

L

F

-1 9

[

4

[

>

o - v Tt rd T - ' h . - e - ‘-“‘-"n‘h

T S B O R N Ry T S
» L3 } - 0 £ () ¥ - {) i) " L

L)
-
]

-y -
T
s

.«
.,
“'a

n:

P
"

have ICOM labels attached to it, specifying the line as a
boundary arrow, and a label that is placed inside a TO-ALL

or FROM-ALL circle attached to one end of the line. Also,

two numbers are defined that identify the graphical entities

drawn on each end of the line (ie. arrowhead, tunnel, dot,
turn right, or branch left, etc.). Finally, the lines are
stored in binary trees with the root nodes linked to other
root nodes by C pointers. Figure 7 shows three groups of
lines and the corresponding linked list structure is shown
in Figure 8. It can be seen from this figure that this
arrangement is advantageous because the tree arrangement
maps closely to how the line segments actually connect to
one another and because C supports the simple recursive

functions used for traversing binary trees.

Demo 1

8

2 3
s K L]
——
Demc
§ DOx

2

12

Figure 7. Example Group of Lines

4-12

[Iy

ek

B\ |

3

"
el

Figure 8. Resulting Linked List Structure

The line structure uses a C pointer to point to a data
dictionary structure representing a data diétionary for a
data element. This structure saves the data dictionary
information input by the user and is merged with the diagram
information to complete the data dictionaries for data
elements. Specifically, the user must input the description
field, alias name field, alias comment field, related
requirement number field, Qersion changes comment field,
data type field, minimum value field, maximum value field,
range of values field, values field, part of field, and the
composition field.

The squiggle line structure contains all the
information needed to draw a squiggle line. A squiggle line
is strictly a graphical entity, needing only four coordinate
pairs to complete its specification. Again, a squiggle line
classification number is assigned to each squiggle on the

diagram. The squiggle lines for a particular diagram are

4-13

t

v ¥ =

N ALY

)
>

R
.

stored in a singly linked list; theretfore, each structure
contains a ¢ pointer to another squiggle line structure.

The header structure contains all the information
needed to draw, locate, and classify the seven header fields
of an SA diagram. Except for the number field, each of the
fields 1s included in the data dictionaries for the diagram.
Since ecach diagram only has one header, only a single C
pointer 1s maintained to save this information.

The last primary storage structure, the footnote
structure, keeps all the information needed to draw, locate,
and classify a matching pair of footnote labels. lLike the
squiggle line, this information is strictly graphical. The
footnote structures for a diagram are stored 1in a singly
linked list; therefore, a C pointer to another footnote
structure is defined.

Data Dictionary Information Derived from the Graphics
Information. So far in this section, the graphical
information stored in the various structures and the data
dictionary information not contained in the graphics
information has been i1identified . The purpose of the
following paragraphs is to identify the data dictionary
information that is derived from the graphics information.

In an activity data dictionary, the header structure
directly provides five data dictionary inputs and part ot a
sixth. The PROJECT, DATE, and AUTHOR fields are exact

mat.hes with the fields of the same title in the data

WA PR AR

A
-
N dictionary. The NUMBER field of the data dictionary is the K
result of appending the number of the activity box to the
,
l NODE field of the diagram. The PARKENT ACTIVITY and VERSION
fields of the data dictionary are synonymous with the TiTLE
L and RFV fields of the diagram, respectiveliy. :
(] The INPUTS, OUTPUTS, CONTROLS, and MECHANISM fields of :
B the data dictionary are derived by matching the starting and :
;‘E_ ending points of a4 line segment with the boundary of the -
o
- activity boxes. When one of the line's start or end points
: matches a box boundary, the side of the activity box
determines the appropriate field and then tree traversal
F algorithms can f'ind the closest label to the box.
In a data dictionary for a data element, the header \
) structure directly provides four data dictionary i1nputs. ‘
. The PROJECT, DATE, and AUTHOR fields are exact matches of
~ fields with the same title in the data dictionary. Also,
" the VERSION field of the data dictionary is the same as the
lg REV field of the diagram.
.. The SOURCES and DESTINATIONS tield of the data :
':: dictionary cannot consistently be resolved by the tool. 1t _
s 1s possible in an SA diagram toc have a valid data entity 4
. ;
" that has no sources or destinations due to the pipeline ;
.-:':: fenture of the language. Currently, the data dictionary s :
unable to handle this situation with the precision needed _
::: for 1mplementation with the tool; theretfore, the tool leaves
;:,, these spaces blank. by
e
{-.
L]
1-15
o
b

P L T AT T A AN

FRPAENELPAPY T GRS PR TRY LR SR SN G Sy

This section discussed the design of the data
structures and the information they contain. This
information 1s used to generate output products, and the
information is stored in files. These files of information

are discussed in the next section.

Data Files

I.Like the data structures used by the tool, the data
files each have their own format that is diftfterent from
Urscheler’s prototype. The tool is capable of creating five
different data files, two that save the raw data (graphics

and data dictionary information) and three that save the

output products from the tool. The following paragraphs

briefly describe the files and their formats.

The graphics information from the diagram is maintained
in an ASCI] file labeled as <(filename>.gph. In the file,
squiggle line, footnote, box, and line information i1s saved
in a precisely formatted manner. If a field has been letf't
blank by the user, a "$$NULLS$$" string is placed in the file
as a place holder. Appendix C contains an exact definition
of how this file is stored.

The data dictionary information from the diagram is
maintained 1n an ASCI1 file labeled as (filename>.dbs. The
data dictionaries tor each activity and only the data
dictionary data elements defined by the user are saved in
this file. The design of this file format 1s the result of

another thesis in progress at the time of this writing

.-
;

AN

Yy
.‘l,_-

PR
.

e,

s 1 151 [4

."

- - -

P

(Connally, 1987:). This format is also detined in Appendix
C.

The facing page text for the diagram is saved (at the
option of the user) in an ASCII file labeled as
{filename>, fpt. The facing page text is a copy of the
description fields of the data dictionaries ftor each
activity box. The format in which it is saved 1s specitfied

in Appendix A.

The user also has the option of saving in a file a ;
formatted copy of all or selected data dictionaries. This a
"4

file 1s an ASCIT file that is labeled as <(filename>.dd. The A

format. for this type of file is also specified in Appendix
AL

The user has the option of saving a copy of the diagram
genaerated. This file contains a SUN raster image of the
diagram that is labeled as <filename>.dmp. SunView raster
functions are used to read the diagram image from the screen
and save it in the SUN’s raster file format. The user may

obtain hardcopy by using the UNIX "lpr -v" command.

Coding Approach

Having complieted the design specification, defined the i

Y

data structures, and defined the file formats, the next step p
wias the actual coding of the modules. As previously 3
ment 1oned, the programming language used to implement this .3
K

toc!] was C. This section describes the coding approach.

e

O TP I TIAY SR S L I « o)
o R ‘r_‘\)'*'-""w‘." -?'"f“J‘Nv,",'
[SEF o> ». N T

A top down approach (Pressman, 1982:232) was taken in
developing the modules. The process started by developing
the main control module that called the appropriate
functions associated with each menu selection. With the
control structure and numerous module "stubs” in place, the
module stubs were replaced with the real code and each
stub’s lower level modules until the project was complete.

Iinternal documentation of the code followed that
prescribed in the AFIT/ENG Software Development
Documentation Guidelines and Standards. Kach tile began
with the standard file header (Hartrum, 1986:38) and each
module began with the standard module header {(Hartrum,
1986:10). In addition, C language comments were provided in

the code to amplify and clarify sections of the code.

Testing Approach

Testing was accomplished in conjunction with the coding
phase in this project. A slightly "impure" integration test
method was applied (Pressman, 1982:298-9). The procedure
was impure because neither the depth-first or breadth-tirst
incorporation approach to integrating new software into the
existing software was consistently applied due to the time
constraints of the project. Typically, about ten modules
were written and added to the software before applying the
tests.,

Obviously, an exhaustive test was i1mpossible for a

project of this magnilude; however, the tests conducted

=18

>

ird

3

LN

|

¥
s

- e—

‘-'.

A

£

o

vy,
e

LN

L

LA
»

(’"?.1

.
N

sy

attempted to assure that all module paths were exercised at
least once, that all conditional statements were verified,
that each module provided the needed function, and that
errors were properly handled. To assist future

maintenance actions on the code, debugging "printf"
statements identifying its position in the code were used to

alert the user when an unanticipated condition did occur.

Summary

This chapter discussed the design decisions based on
the requirements and objectives of the thesis. Five
recasons why the SUN workstations met the hardware
requirements were stated. Second, portability of the tool,
reusability of the Urscheler code, and suitability of the
SunView environment were issues covered by the software
considerations. Considerations from previous studies found
data dictionary constraints that were maintained in this
tool and found design decisions that were carried over from
past works. Next, the screen layout, menu system, and use
of voice were identified as the key human/computer interface
topics that concerned this tool. Also, decisions involved
in the design of the data structures and data files were
identified. Finally, coding and testing approaches were
explained in the last two parts of the section. Given this
information, the next chapter discusses the tool's operation

and the results of the tool's evaluation.

-0

PR T T T
T (o N T IR
BYSTAT QW @ W AV e s . i (il 3

.- T TNt L e S T et T T et e T e T T et .

T e e T T

K I)

O

I3

-

‘y

[{ v{. ’ .

‘v"lr‘

[Y

AN

V. SA TOOL OPERATION AND EVALUATION

The i1ssues and decisions surrocunding the design of the
tool were discussed in the previous chapter. The purpose of
this chapter is to provide a broad overview of how the tool
operates and to report the results of the tool’'’s evaluation
by a group of AFIT students.

This chapter will first discuss the tool and its
function and then report the evaluation results. The first
section presents the tool’'s function in six parts:
initialization, graphics functions, data dictionary
functions, facing page text functions, input/output
functions, and miscellaneocus functions. The user 1is
referred to the User's Reference Manual (Appendix J) for a
complete discussion of all the available functions. The

first part discusses the initialization of the tool.

Operation

Initialization. To start the tool running, the user
must first invoke the Suntool environment. This is
accomplished by entering the command "suntools"” at the UNIX
prompt.. Once a C-shell window has been opened, the user is
ready to run the tool.

The command to start the tool is "SAtool.” The tool

was designed to accept a -v option to enable the use of a

N

.

;j DECTALK voice synthesizer to provide audio feedback for

- the user; however, this feature was not implemented due to
i the time constraints involved in the project. The user 1is

now ready to begin using the tool and may select one of the
- oval buttons in the Selection Window for a menu of choices.

Graphics Functions. The graphics functions, located on

=8

menus under the "EDIT DIAGRAM" oval, contain all the

functions needed to draw and label an SA diagram. The

&S

functions make it possible to add a new or edit an existing

r

N . . o . . .

v graphical entity (activity box, ICOM line, squiggle line,
s diagram label, or footnote marker).

L]

[

Five operations are permitted on activity boxes.

Adding an activity box involves setting the location of the

1 E

box as well as entering the box name and box number. To

| od

edit one of the box attributes, the user identifies which

box by placing the cursor inside the box and clicking a

LA
& 3 L

mouse button. Each of the operations involved in adding a
IF box, setting the location and entering the name and number,
-
. may be changed by picking the appropriate menu selection.
K: Finally, an existing activity box may be deleted.
ﬁ: Six operations are permitted on lines. Adding a

line 1nvolves selecting the two endpoints using the mouse

and selecting the begin and end attributes from their

respective menus., 1f the end attribute is a Branch or Turn,
the tool automatically positions the cursor at the end of

the Branch or Turn to continue drawing the line. To add or

R A

Y

.:,""} J-“J'J‘J'J'\ P ,,\.;..ﬁ\ *,‘_‘_4-,'%*’:4'(.#.1 -
‘!‘ R P I IO A NN NN e

.AUAA‘A.&AJ'.LJJVI_L‘:&I‘IM{.A

(R |

1:1
S

¥

r
/]

-"‘..";.]

change a line label, the user selects the menu function,

"Kdit Line Label,” and moves the cursor to a point on the
line and clicks the mouse to select the line. The text 1s
then entered from the keyboard. A TO-ALL, FROM-ALL, or 1COM
label, specified when a line 1s added, may be changed by
selecting "Edit TO/FROM lLabel” or "Edit ICOM Label.”
“inally, the line may be deleted entirely or redrawn with
the "Redraw/Delete Line" selection. The choice of these two
operations is made by clicking a mouse button. The Redraw
function deletes a line and any connected to 1t and starts
the user re-drawing the line with the original beginning
attributes.

Fifteen operations are permitted on the seven
diagram header labels. Each diagram header label may be
first added, or later edited, for a total of fourteen. The
fifteenth operation, useful at the start of a new diagram,
allows the addition of all seven header fields without
selecting each operation individually.

Four operations are permitted on footnotes.
Since the footnotes are created and maintained in pairs of
identical boxes, creating a footnote box pair involves
first specifying the number label for both boxes, then
moving each box to 1ts desired location. Changing the
footnote number will change the number in both boxes while

changing a footnote location moves only one of the pair at a

time. To delete a footnote box pair, the user places the

2,
-

o

[T
&

cursor inside one of the footnote boxes and clicks a mouse
button; both boxes are then deleted from the diagram.

Two operations are permitted on squiggle linesg,
creating and deleting. To create a squiggle line, the user
is allowed to draw three, "free-hand” line segments. To
delete a squiggle line, the appropriate squiggle line is
selected by placing the cursor on a point on one of the line
segments and clicks a mouse button. The squiggle line is
then removed from the diagram.

Having considered the functions needed to create and
edit. the SA diagram entities, the next paragraphs discuss
the functions needed to complete the data dictionary
information.

Data Dictionary Functions. The data dictionary
functions, located on menus under the "EDIT DD" oval,
contain all the functions needed to enter and edit any data
dictionary information for the diagram. The information 1is
entered via the Data Dictionary Window.

There are five operations available for managing the
data dictionary information. "ADD DD" is used to create
storage for data dictionary information for a line. The
user selects the line by moving the cursor on the line and
clicking a mouse button. The data dictionary template is
placed 1n the Dat:. Dictionary Window with the number in
parentheses before the field name specifying the width o.

the field. While entering the information, the "ADD MORE

-

AW

LI N
TS AT,

ALIASES" selection adds another alias block to the existing

template. Reviewing or further editing an existing data
dictionary is the purpose of the "EDIT DD" function.

(Recall that data dictionaries for activity boxes are
automatically generated.) Selecting "DD-FINISHED" causes
the information in the Data Dictionary Window to be
collected and stored in the data dictionary data structures.
Finally, "SAVE DD IN FILE" permits the user to select cne or
more data dictionaries or all data dictionaries for saving
in an ASCI1 file in the format specified in Appendix A.

Facing Page Text Functions. Located under the "FPT
FUNCTIONS"” oval are two facing page text furctions. Both
operations build the facing page text according to the
format. 1n Appendix A from the descriptions entered in the
data dictionary. The first function displays this
information in the Data Dictionary Window while the second
funct.ion puts the information in an ASCII file.

Input/Output Functions. The input and output functions
are located under the "RECALL DIAGRAM" and "SAVE DIAGRAM"
ovals, respectively. A previously saved diagram may be read
in with the "RECALL DTAGRAM" function by specifying the
filename (without a dot (.) extension). The program checks
the working directory for files named with the given file
name plus ".dbs” and ".gph" extensions and loads their

information into the data structures.

W e e e

.r.,c...':x::xﬁm.c JMMM’ &(&&h&ﬂ@ﬂhﬁ.mmm;&& aie

T TN TR I

i
b‘-

The diagram currently stored in the tool’'s datna
structures may be saved 1n a similar manner, with the tool
- adding the dot extensions to the file name. The user
- selects either "Save for DB" to create a ".dbs” file for

saving 1n a relational database or "Save Local"” to create a

file with a ".dbs" file that is not compatible with the

database tool, yet remains compatible with this tool.

Miscellaneous Functions. The miscellanecus functions,

ﬂf found under the "MISC FUNCTIONS" oval, contain operations to

- save a file that generates a hardcopy of the diagram,

2; to manipulate the working directory, to erase the current

- diagram and data dictionary, to redisplay the Diagram

- Window, and to quit the tool. "Make Diagram (Normal)" and

i "Make Diagram (Sideways)" may be selected depending on the
desired orientation of the SA diagram on the page. The user
specifies a file name and the tool adds a ".dd" extension to

! the file that can be printed on SUN laser printer. The

7 current working directory is displayed in the Message Window

i‘ by selecting "Display Directory"” or can be changed by

B selecting the "Change Directory” function. "Start New

E Dingram” erases the Diagram Window and empties the data

o structures of the information being stored. The "Redisplay E

ﬁ Diagram” and "QUIT" functions are self explanatory.

E‘ Given this broad overview of the tooi and its

) operation, the next section discusses the results of an

-

e evaluation of the tool.

-

: 5-6

.

s

e g A S e A

Evaluation Results

Two graduate software engineering classes at AFIT used
the tool i1n conjunction with a homework problem and
evaluated their experiences with the tool. In this section,
the evaluation methodology is described followed by the
conditions surrounding the evaluation. Finally, the results
of the evaluation are presented.

Evaluation Methodology. The student's reactions to the
tool were gathered using a quantitative questionnaire
developed at AFIT (Mallary, 1985: 81-5; Foley:1986). For
the purposes of this evaluation, the use of this method was
assumed valid. The questionnaire consisted of 12 questions
regarding different aspects of the tool. Figure 9 1s an
example of one of these questions. Figure 10 is a list of
the 12 questions. Question 12 gathers an overall rating of
satisfaction that was compared to the average of the other
11 questions.

Each of the first 11 questions was rated on a scale
from -3 to 3 on four adjective-pairs. For each user i1 and
question j, these four scores were averaged to give a
reaction score Rij. Each question also had an overall
satisfaction score for correlation with the average of the
adjective-pair score (unused in this evaluation). Finally,
to weight the adjective-pair score (Wi)), each question
allowed the user to rate the importance of the particular

tactor to him on a scale of 0 to |.

K From this i1nformation, a normalized satisfaction score

NS for each user was computed as

. 11

NS = 1/(3%Ni) Z Rij * Wij

J=1
where N1 1s the number of questions whose reaction score Ri |
% was not zero. The normalized satisfaction score indicates

the degree c¢f user satisfaction according to Table 1.

~

~ | 1. System Feedback: The extent to which the

~ ? system kept you informed about what was going on
i in the program.

§ insufficient | | _ 1 | . . sufficient

. unclear , , + | | clear

X

N useless | | 1 . . 1+ | useful

bad | N 4 4 1 4+ , good

unsatisfactory | | 1 {1 . satisfactory

To me this factor is

* unimportant , |} { | | | | important
q Comments:
Yy Figure 9. Example Evaluation Question Format
! Source: (Mallary, 1985:111;
L.
Evaluation Conditions. Thirty-three students were

o assigned to make one diagram using the tool and complete the
- evaluation based on that experience. Fach student was given
o

a guide that explained the workstation’'s login and logout
\.I
o
[]

» TABLE |

" Bailey and Pearson Ratings

NORMALILIZED SCORE TRANSLATION

+1.00 Maximally satistied
+0.67 Quite satisfied

+0.33 Slightly satisfied
+0.0 Neutral

-0.33 Slightly dissatistied
-0.67 Quite dissatisfied
-1.00 Maximally dissatistied

Source: (Mallary, 1985)

procedures, error recovery procedures, menu selection
procedures, and the components of the screen layout.
Information regarding the exact function provided by each
menu selection was not available to give to the first class
cf students; therefore, it was not provided to the second
class to maintain consistency across the two classes.
Evaluation Results. The average of the normalized
scores for the ftirst 11 questions of the evaluations was
0.295 or about "Slightly Satisfied" according to the
translation of Table 1. The scores ranged from -0.182 to
.68¢ with a standard deviation from the mean of 0.294., This

'

compares closely with an average 0.333 "overall
satisfaction” rating given on question 12. On the average,

the evalutators used the tool about 138 minutes. Table 11

shows how the evaluation broke down by question.

(X4

L
[

=
.

A

ol

L4 ,’. 2."‘

a

9.

1.

ERPPT

R ‘.’.‘.'.'
Ve
I PP N P Py TP PP Mm\.ammm

System Feedback or Content of the Information
Displayed. The extent to which the system

kept. you intformed about what was going on in the
program.

Communication. The methods used to
communicate with the tool.

Frror Prevention. Your perception of how wol!
the system prevented user induced crrore

Error Recovery. The extent and onse wath
which the svstem allowed you to recover from

user 1nduced crraora

Documentat ron. Yeur overall percepltion s o
the ueotulness of the documentaliot,

Fxpectat tons., Your perception as to the
soervices provided by the system based on your
ecspectations.,

Conthidence 1n the System. Your feelings of
assurance or certainty about the services
provided by the system.

Ease of Learning. Ease with which you were
able to learn how to use the system to
generate [DEF0 definitions.

Display of Information. The manner in which
both program control and IDEFO information was
displayed on the screen.

Feeling of Control. Your ability to direct or
control the activities performed by SAtool.

Relevancy or System Usefulness. Your
perception of how useful the system is as an

aid to a software developer.

Overall Evaluation of the System. Your
overall satisfaction with the system.

Figure 10. Evaluation Questions

Y. IR U
H L

I I O O W D N T R T O O T P O e Y TTWorw

¥]
o
ot
TABLE 11
l Average Normalized Score by Question
‘% QUESTION AVERAGE NORMALIZED SCORE
: 1 0.453
2 0.399
. 3 0.060
\ 4 -0.056
' 5 -0.055
- 6 0.318
) 7 0.406
' 8 0.406
. 9 0.453
5 10 0.346
5. 11 0.475
12 0.333
N
The lack of adequate documentation of the tcol for the
evaluation probably contributed heavily to the lower scores
‘ received on questions 3, 4, and 5. One user commented, "1
s would rather read and see example displays, as opposed to
1%
the trial and error method (of learning the tool).” With
regard to question 5, the users frequently commented they
could find no documentation, and four users failed to even
’
J rate the question. Regarding question 1, users described
. mistakes they made in drawing the diagram, noting they were ;1
N .
- 1
unable to undo the error. In every case there was a menu]
‘> selection available to undo the error, but the person was i
apparent.]y unaware of the selection’s existence. By the =7
.
same reasoning regarding question 3, the users probably made {i
.
P~ more errors experimenting with the menu selections trying to -ﬂ
'
- -“
_1 .
' -
RN N N RO 2 B -

4

»a
e 45

A,

¢ _ 0

determine their functionality, leaving an i1mpression of

poorer than expected error prevention capability.

The users offered suggestions ftor improving the tool.
For instance, one suggested that a help selection be added
to each of the menus. This would be a useful and
stralghtforward addition to the tool. Also, it was
suggested that a universal undo command for each menu
scelection be made available., This would also be useful, but

much legs straightforward to implement.

Summary

This chapter discussed the operation ot the tool and an
evaluation of the tool. ft gave procedures for invoking the
Suntool environment and the SAtool. Each operation
permitted on the five major graphical entities (activity
boxes, [COM lines, squiggle lines, diagram labels, and
footnote markers) was ildentified and described. Next, the
data dictionary capabilities of the tool were described
followed by the facing page text functions, Following this
description was a discussion of the input/output functions.
Finally, scome miscellaneous functions provided by the tool
woere desoribed.

An evaluation of the tool was performed using a
quantitative questionnaire and statistical analysis of the
results. The method of computing the normalized

sat.isfaction score was detailed as well as the conditions

under which the experiment was conducted. The recsults found

that

the

conclusions

seve

users

tool.

The

ral future

wWere
tfollowing chapter presents the

from conducting this chesis

result of

projects as a

"slightly satistied” with

the performance of
researcher’s
and recommends

this effort.

l.l

[R]

Bl

A
o=

LY)

L

Vi, CONCLUSTONS AND RECOMMENDATIONS

Conclusions

The purpose of this thesis was to sbecify and design a
tool that allows a user to interactively create and edit
structured analysis diagrams. In addition, partial data
dictionary information 1s automatically generated from
graphics information by the tool and is supplemented by
inputs from the user.

Each of the three phases of this effort was
accomplished successfully. During the first phase, the
Urscheler implementation was analyzed and the reusable parts
of his software were identified. Also, a graphical SA
language was derived from several sources and a subset
identified for implementation in this tool. During the
second phase, the structured analysis and data dictionary
methodologies were combined and the tool was built and
successfully tested. During the third phase, the usefulness
of the tool was evaluated by polling people who used the
tool for a classroom software engineering project.

The evaluation found the users were "slightly
satisfied” with the performance of the tool. Three
questions rating the documentation, error prevention, and
error recovery capubilities were given significantly lower

ratings because no documentation of each function provided

Lthe tool was available at the time of the experiment.

Y x e Ca s

~ Although the objectives of this thesis were

accompl ished, there are several aspects of the tool that
l could be enhanced to make it a better product. These

aspects are enumerated in the next section.

Recommendations
The recommendations are divided 1nto two categories:

small scale projects and large scale projects. Presented

‘..«

i first are the small scale projects.

TE Small Scale Projects. The following are recommended
.~ small scale projects for improving the tool:

;i 1. Integrate the use of voice. This project

should go back and analyze the "put message()"
functions that provide the user with feedback
) in the tool's Message Window. This function
was designed to send messages either to the
, Message Window or a Dectalk voice synthesizer
i or both. Currently, all messages are routed
to the Message Window, Developing this
capability could enhance the human/computer
interface.

PN
v
W

h

2. Improve the method for making hardcopies of
the diagram. The current method reproduces a
pixel by pixel image of the Diagram Window

=~ into a SUN rasterfile. A method should be

. considered that would command the printer to

?- draw lines and text rather than generating

o pixel by pixel images.

h } Improve the method by which the user inputs

. data dictionary information. The current
method uses a generic editor that is unable to

A prevenlt the user from entering information

~; past the end of the different length fields.

T If the information exceeds the field boundary,

- the information is truncated when 1t is saved.

o A method should be investigated that will not

- allow the user to enter information beyond the
end of the field.

a

)

‘-(

o

‘Ol

'}'.l

L

P
-",

|93}

Large Scale Projects. The following are recommended

Compatibility test this tool with Foley’s tool
via the relational database. The data
dictionary information for this tool was
designed to match that of the Foley editor.
Testing should be conducted to ascertain the
compatibility of the two tools.

Provide on-line help. Currently, help from
the tool is provided via the Message Window.
Due to the size of the window, help messages
tend to be cryptic. Therefore, a method of
providing more in-depth explanations of
commands from the tool should be considered.
Adding one "help” selection to each menu has
been suggested.

scale projects ftor improving the tool:

Convert. the tool from SunView to a standard
graphical package like GKS. Converting Lo a
graphics standard would increase the
possibility of porting the tool other
workstations.

Make the tool capable of handling an entire
project. This would require adding more data
structures to maintain the graphical and data
dictionary information for all the diagrams in
a given project. This enhancement would

allow more consistency checking algorithms for
the data and allow the tool to generate more
complete data dictionaries for data elements.
Also, a method to walk through the diagram
hierarchy would need to be implemented.
Examining current commercial tools and their
"explode" capability, the ability to see an
activity box’'s decomposition by exploding the
box for a "closer” look inside, might be
helpful.

Remcve the necessity of maintaining graphical
information. This would require an analysis
of the data dictionary format to ensure 1t 1is
capable of holding all the information
contained in a graphical picture. Once this
is proven, 1t should be possible to
automatically draw the diagram from the
information contained in the data dictionary.

b=

(YR

.
o

-y

PR

-

(91

Add color to enhance the human/computer
interface. Colors might be used to reflect
the presence of data dictionary information
for a line or to reflect the presence ot poor
coupling and cohesion characteristics among
the activity boxes Lo suggest just of ftew of
the possibilities. Here, a trade-off with
portability should be carefully considered.

Redo the entire project in Ada. This project
would be contingent upon the upgrade of
SunView to support Ada. This project would
make the tool better suited tor use by other
agencies in the U.S. government, given 1ts
requirement. for using Ada for all new
software developments.

Appendix A: AFTT STRUCTURED ANALYSIS SYNTAX

The purpose of this appendix 1s to precisely detine the
tormats of the documents generated by the structured
analysis tool. The AFIT syntax for structured analysis
diagrams is derived from SADT and IDHFO graphic syntax.
Also, the format tor the data dictionary entries, and the

format for facing page text is specified.

SADT and IDEFO

A tabulation of the SADT language's syntax and concepts
was presented 1n a paper by Douglas Ross in 1977 (Ross,
1977) . Figure 11 1s the figure presented in that paper.

The subset of the SADT syntax used by IDElF) was defined
in the "User’s Reference Manual," published by the Materials
lLaboratory at Wright-Patterson AFB, Ohio (IDEFO Manual,
1981). Some of the language used in example diagrams was
not described in the text. Therefore, Figure 12
was generated to summarize the lDEFO syntax in a table based
on the example diagrams and text in IDEFO user’'s manual.
Additionally, the column called "term” was the name by which
each notation was referred. Some entries in the Ross
article table are methods and not graphical entities;

therefore, they cannot be implemented 1n a CAD tool. An

example of this is Line 36 in Figure 11,

<
"
Lo . . . °
B Not all the graphical entities presented by Ross were -
-, .
implemented in the IDEFO language. Figure 13 is a summary
u B
of those notations.
‘ .
ro .
«, B
ra ' ; ! -
Pyopos g [ST H aCTETION w0 PURPOS ! ‘ T wUATION ' ol -
' — -
. | X i T
S sowm comtest tovitnouthie 3 e et ‘ - Sona . ° 35 l-ea - S\J = o -
" : —_— I S cesman on ! s iea-n N 1 ALl
4 N . a — = .)
" : B4 ol T ST 32 ssena e [&] cevags: ‘ . on — |) !
Y R ~me ———
,) . . avecms | i J L3I
31 reaw Teamsioemet iom; Iy g Tt S wrreraiq iRt l
e te. h A] ESUUE NN .
F: [} | e (1w set) sl { C(mtan, : < mrgesalr —Lere Al- e te BeFrOENCES T —_— — e I R
: .-, ARSN. Dresegis
L S e ’ = s @ v
T $ I [T P i R € al.manise oo a S AL, e tNOw a. I-—- P = PP it | R
. ' " | T ot man 34 B { — — — "
LalTIv]TY \3 . [ESOARSAN 3 . ' '
.- - w— iaes - PRI ! R <
L ¢ haa bl arorerincs twimet e L (e L woum i . Leno71" On i 52 mate 1 =Tt AL h
, t e | Moo | e ey o
Came. et Cormimes baeetniedk o LAy 1 . Aveacomt | A0e mimon .. e
i | L . mam(s shace LTIETION D0 woapy Ir sootmctl e A
P e N T | AN D AGSas D — —_— t
[} ‘ Smow WCEALITE | 1eC c-c J sarn " — B- Qo *) " = -~
h ' ' — FELTIGE L BNl e | S -
. 9 | pow oovinemcr . i Cmitanin ‘ — A I i
f . —_— 4 ‘ — 4 I ensonr . " - C . o
o ! ! Y - L LR S oarinoc sun e RIS oy R an
10 toom W0, Evancl ree B “~ e e BN B ! : T
{ ' [
- _ N L& .
'i u it oeviows l -0 j Vet P } "L_. - e AIF o REFEREACE , CoToraLoC A Lavreon v rwveces] aas
- — i <
| | | | .. - . H
f LSS SIS Uy Rt - 0 P 1o i - .5 . :
n | [T NTIN “‘ QL NS : Poance 20 S (‘-?1?3%-«‘ | -::r- IOD?:\.!-:‘!(I'. ?la:cg‘w::’l:“ ’:"_' ?' -w: - A2
.t hov | e V ;
__l ot ' comu*s. ; 7 i
:; 13 : i iy : Jo1m | A2Z ” i N“f""_";g:d f :zi{n‘.“’.; ‘ S& mODE. wam¢ mODE, NamE / wODE P | [N .
1
- | jp — . ! =
A Je M comcist ! [I ! el okl 3] Wmiout TmTERsacy ST 1 sh (o= e . "l
ARC CLE6S ' M. : ! ‘- B 2LrERENCE BCr wmage 801 LT 10 Lot ¥
— : ; ‘ :
1% " T |~ vy - MO AREOw sor [COm,
. agar P L ag * . . . s
i ; »egar ‘ Llaady w e LRrnct : rao~ ¢ PaiE OF 8Os 1M . sor COM, ML
. | : : [V -)
) l n - s 0% l_—‘ PRad] . Seagm COMTERT LISy . P - -
* [BT E T 3 | = peih RIS (SA aergae Coo D L 4
| il . wil> SEL .
v ot | acremarivs ; - L e o0 Ay ¢ assiee cosmgge o SO OORimamct ‘: >~ Imanc{ . . 4
" [| oo L o A 3 | atmeerTat i ‘7"“:’7“:'::‘" L Sterecast avow - I : . 9
. ' >
By T B .
s o wTERSACTS o o as3ise seost Jmmanr 1.
> 1 n.."g““” I !51. 0mpaer anaows | .:_. Q. ¥l mpeestanoine | of messacl S& rexr :'°“' Towttea; A5 ‘ R
| sawOwL PeaETeaTl t 1om CwilD) “ w0 800 8 + + + -
= . ' T T r { . . | !
t’ [TIT "“5:.‘?":,"“ |‘ oL T —_ on % 1w iGnt sratmes |lo:’:;;;|::;(;u S4 FEQs wores £ rutrege| AS :
¥ 19 | piaenr comeztion | 70 IOP o |2 = v | .
. N om T 4 ' =
j} ! s aamoms ! r fom cwrip % . ! I nODE. wan . -
- i meats o0 — w© EXNL T Y CLoSsAer W e SO Gucssane . A5 Y
n [V SEr Y vy DETAL, SEFUAERCT vact ey sor 5 wOR0s L P Tim(s J v (LMY '] -
SECOOS 17 i on Crovgssion (DR [oo prra. . Diakmss orr] hth . -
oo b Laaes DI wirm | SA . 207 N o cacan It PasES SROVIDL ABLL L 5a aon0 iwpis o2t oRD(Y [4
t 7 -,cu:;;‘,ﬂ- | MO0L. man I on SursORT 5'W‘W"\Ml 2 N nrocomteute - ‘
- '
- R
t « 3
. .\
Figure 11 SADT Language Features
'
.)
Source: (Ross, 1877:20) .
»
]

v 5 ¥
Tt

e

ot

Ross articl
line number

~N T O e W W N -

12
13
14
15
18
20
22
24
25
217
28
29
30
31
32
33
37
38
39
40

e

Term

BOX
ARROW

INPUT
OUTPUT
CONTROL
MECHANISM
ACTIVITY NAME
LABEL

BRANCH
JOIN

BUNDLE
SPREAD

BOUNDARY ARROW
DETAILED REFERENCE NUM
2-WAY ARROW
TUNNEL ARROW
TO/FROM ALL
FOOTNOTE
META-NOTE
SQUIGGLE

-NUMBER

NODE NUMBER
MODEL NAME

ICOM CODE

FACING PAGE TEXT
FEO (FOR EXPOSITION ON
GI.LOSSARY
NODE INDEX

User’s Manual

Refe

[N I T Y T A O N S R N A |
EORE-GNN “« - e OO

| A A U A R |
(o2} =22 R

LY)

|
LW = XN WWNWENNWNW == CLWwWw—NNNNN
(o]

-

rence

W

(F1G)
(F1G)
(FIG)

(FIG)

(FIG)

(F1G)

(FIG)

o

Figure 12.

IDEFO Graphic Syntax

Ross article User'’'s Manual
line number Term Reterence
16 OR branch NOT FOUND

17 OR join NOT FOUND

21 CALL ON SUPPORT NOT FOUND

23 2-1 WAY BUTTING ARROW NOT FOUND

26 NOTE NOT FOUND

36 REF. EXP. "DOT" NOT FOUND

Figure 13. Graphic Notations Unused by IDEFO
A=

B D A Oy R e Pt

ers

f‘ A"‘.f.' y.

An additional graphical feature 18 used in both the
Softech and IDEFO diagrams but not described by IDEF or the
Ross article, is the use of the slash (/) to separate
the forward and backward content of double headed arrows.
This syntax is described in other Softech literature

describing the SADT methodology (Softech Inc., 1976:4-21).

AFIT Structured Analysis Diagram Syntax

A sampling of structured analysis diagrams generated by
AFIT students and faculty found the syntax adopted by IDEFO
ig sufficient for performing requirements analysis. None of
the graphic notations described by Ross and unused by lDEFO
were found 1n the diagrams sampled. For these reasons,

Figure 12 1s also the AFIT syntax.

Subset of AFIT Syntax lmplemented

IF'igure 14 is the subset of the AFIT structured analysis
syntax that was implemented by the tool. Due to the time
limitation for implementing the tool, some of the low
priority constructs were not implemented. Presented next
are the reasons the five graphical constructs were not
implemented by this tool.

Meta-notes are additional comments about a structured
analysis diagram and are placed on the diagram. This
feature was not implemented because the diagrams must be

tied to the data dictionaries as much as possible.

A
wetel ", . f v PP r s - o r Cr, !.J e e e e e T e e N T e e
u-... % - - s w.f. . .\. e N e T A

R
e N

Ross article User’s Manual
line number Term Reterence

BOX 2-2,3
ARROW 2-2,3
INPUT 3-26 (IF1G)
ouTrPUT 3-26 (FI1G)
CONTROL 3-26 (F1G)
MECHANISM 3-11
ACTIVITY NAME 2-3,4
LABEL 2-3,4
BRANCH 3-9

JOIN 3-9
BOUNDARY ARROW 3-17

2-WAY ARROW 3-26 (FIG)
TUNNEL ARROW 2-3
TO/FROM ALL 6-21
FOOTNOTE 3-26 (FIG)
SQUIGGLE 3-26 (FI1G)
C-NUMBER 2-3

NODE NUMBER 2-3

MODEL NAME 3-16

ICOM CODE 4-8

FACING PAGE TEXT 4-1

Figure 14. Ilmplemented Graphic Syntax

Meta-notes do not correlate to any data dictionary entry.

According to Ross:

There is no way that information 1n metanotes can
participate in the information content of the
diagrams, and theretore they should not be used 1n
an attempt to affect the interpretation of the
diagrams themselves, but only for mechanical
operations regarding the diagram's physical tformat
or expression (Ross, 1977:30).

Bundle and spread were not implemented because these

constructs can be represented as a special case of the

Join and Branch, respectively. Ilmplementing both sets of
constructs 1n the tool would be a duplication of effort.
FEO'’s pictorially highlight features and special effects of
the diagram. They were not implemented by this tool because
they do not correspond to any data dictionary entry, except
the description. The user should attempt to highlight
features of the diagram in words in the facing page text of
the diagram.

The purpose of the Glossary 18 to define terms using
words and pictures. Again, because items normally found in
the GClossary cannot be directly tied to the data dictionary,

1t was not implemented.

Data Dictionary Formats

There are two types of data dictionary formats, one to
desceribe activities and one to describe data elements., For
this tool, the data dictionaries gencerated were of the
formats specified by the AFIT Software Development
Documentation Guidel ines and Standards (Hartrum, 1986).

Figure 15 shows the format for the 1information inserted
into a Data Dictionary for Activity. IFigure 16 shows a
campleted example of this type of data dictionary entry.

IFigure 17 shows the format for the information inserted
rnto o Data Dictionary for Data Element., Figure |8 shows a

completed example of thie type of data dictionary entry.

.
L AU

TS|

DA

o

(¥

' .
P
“aas

NAME : (of activity)
TYPE: ACTIVITY
PROJECT:: (Project name)

NUMBER: {Node number of this activity)
DESCRIPTION: (Multiple lines allowed)

INPUTS : (Multiple lines allowed-one entry/!tine)
OUTPUTS : (Multiple lines allowed-one entry/!line

CONTROIL.S: (Multiple lines allowed-one entry/line)

MECHANISMS: (Multiple lines allowed-one entry/line)

ALTASES: (Names of aliases, multiple lines allowed)

COMMENT: (Why is this alias needed?)}

PARENT ACTIVITY: {Name of parent activity)

RELATED REQUIREMENT NUMBER: (Paragraph number of
textual requirements statement)

{Multiple lines allowed-one entry/line)

VERSION: (version of this data dictionary entry)
VIERSTON CHANGES: (Why was the last version updated?)
DATE : (of this entry)

AUTHOR: (of this entry)

Figure 15, Format of a Data Dictionary for Activity

R

-

r e

NAME MANTRPULATE FlLES
Myrhk: AUTIVETY
PROJECT: NETOS

NUMBER: Al
DEsURIPTION: This activity nandles all remote
requests to manlipulate actual tiies. 'his

1ncludes printing local thiles, storing local files
on the MSS, and requesting ti1les from the MsS.
INPUTS :
REYBOGARD INPUT
MSGE & DATA
ISk FllEs
OUVTEVTS
T O OUTPRUT
MSGS & DATA
DisSh FILES
DONE
CONTROLS
SELECTLION
MECHANTSMS
VLTASES:
COMMENT
PARENT ACTIVITY EXECUTE REMOTE FUNCTION
KRELATED REQUIREMENT NUMBER: [

VERSTON: Fou

CLERSTON CHANGES:
DATE: Y/ 13/

A THok: T, L. Hartrum

rrgure Lk, bata Dictionary tfor Aot vty
A==
PR A TG e . L -
R R I IR AT SISO RS RO .
W, () A A v N

| R

tY*r‘
R

P—

'
"

NAME : {of this data item)

TYPI : DATA ELEMENT

PROJECT: (Project name)

DESCRIPTION: (Multiple lines allowed)

DATA TYPE: (it known)

MIN VALUE: (if applicable-multiple [i1nes allowed-1/11ne)
MAX VALUE: (1t applicable-multiple lines altlowed-1/11ne)
RANGE: (1f appiicable)

VALUES: (allowable values, it appropriate - multaple
lines allowed-1 entry ver line)
PART OF: (parent data element - multiple lines

allowed-1 entry per line)
COMPOSITION: (sub elements, it any. multiple tines
allowed - 1| entry per line)
ALTASES: (Names of aliases, multiple lines allowed)
WHERE USED: (IDEFO activity number)
COMMENT: {(Why is this alias needed?)
SOURCES: (IDEFO activity names)
DESTINATIONS: (IDEFO activity names)
RELATED REQUTREMENT NUMBER: (Paragraph number of
textual requirements statement)
(Multiple lines allowed-one entry/line)

VERSTON: (version of this data dictionary entry)
VERSTON CHANGES: (Why was the last version updated?”)
DATE : (of this entry)

AUTHOR: (of this enlry)

Figure 17. Format of a Data Dictionary tor bata

[

":r.-‘ .

Py

NAME: MSGS & DATA

TYPE: DATA ELLEMENT

PROJECT: NETOS
DESCRIPTION: NETOS
transferred around
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE :
VALUES:
PART OF:
COMPOSITION:
MSGS
DATA
ALTASES:

messages and data, i1including

the network.

messages and data

WHERE USED: A122, A135

COMMENT: Due to
SOURCES:
MANIPULATE
MANTPULATE
DESTLNATIONS:
MANIPULATE
MANTPULATE
MANIPULATE

group’s inconsistency

FILES
FILE INFORMATION

FILES
FILE INFORMATION
COMMO LINKS

RELATED REQUIREMENT NUMBER: 1.2.4.2

VERSION: 1.0
VERSITON CHANGES:
DATE: 3/13/84

AUTHOR: T.C. Hartrum

files,

Figure 18.

PData Dictionary for Data

A=10

]

A |
a_x

¥

e
e

Y-

s

0..

[

‘\

‘\.

.

Facing Page Text lFormat

The format for the facing page text generated by this
tool was alsou based on a format provided in AFIT's Software
Development Documentation Guidelines and Standards. The
AFIT data dictionaries are designed to contain all the
information provided in the structured analysis diagram and
its facing page text. To map the facing page text to the
data dictionary, the facing page text must match exactly the
text in the "Description” field of that activity's data
dictionary. The format and rules for facing page text are

shown in Figure 19.

1. A heading is located at the left column and
consists of the Node number, then two spaces, and
then the Title (exactly as given on the diagram).

2. Following the headings is a section beginning with
"Abstract:,"” then two spaces, followed by an
overview of the diagram. 1f a parent diagram for
this diagram exists, then the text matches exactly
the description given on the parent diagram facing
page text.

3. For each activity box in the diagram and in order
according to the node number, a paragraph starting
with the node number, followed by two spaces, and a
description of the activity follows the abstract.
This description will match exactly the
"NDescription” field of the data dictionary.

4. The lines between the heading, the abstract, and
each activity paragraph are double spaced.

5. The first line of each activity paragraph is
indented 5 spaces.

Figure 19. Facing Page Text KFormat

A=11

f. rz II-‘-
~ i SRS . ¥
o a e X A R A - Coe o i {4

Bl

P e . P L P I o " n -
T L SRR e e, j\-\ \::fﬂxfpu\(fv
B A Bt LA

I\

g vt e

-
— e

D)

5

()

“r s

Y Yy
K]

1)

'
[l

rr

[Y

f

A
‘.“-'

;-

LRI

-p',

%Ja'ﬁ

IFigure 20 is an example of facing page text generated

according to this format.

A0 Provide Requirement Analysis CAD Tool

Abstract: Provide Requirement Analysis CAD Tool
provides the user a mechanism by which he is able
to draw activity SA diagrams. From these

diagrams, facing page text and Data Dictionaries
tfor Activities and Data are generated.

Al Create SA Diagrams gathers the user
inputs and converts them into graphical
information representing the diagram. Throughout
the process, the user is informed of progress
through updates on the CRT screen. The user may
alsoc use an existing file of user inputs to
generate a diagram. Data structures are created
from which inputs to the data dictionaries may be
gathered.

A2 Create DD takes the graphical information
pertinent to the data dictionary (activity or
data) along with user inputs to create the
appropriate data dictionary according to the AFIT
data dictionary format. The status of the process
is maintained on the CRT.

A3 Create Facing Page Text combines the
description field of the data dictiionaries for
activities with the changzes desired by the user to
produce a facing page text. The status of the
process is wmaintained on the CRT.

Figure 20. Correctly Formatted Facing Page Text

A-12

AT LIS

A A R e e N N

”

[ve
Lot

"‘

LY

Appendix B: Example Outputs

The following pages contain example outputs of the
tool. The first page 18 an example of an SA diagram
gonerated using "Make Diagram (Normal)" selection. The
second page 1s an example of an SA diagram generated using
the "Make Diagram (Sideways)” selection. The third page is
an example of an Activity Element Data Dictionary and the
fourth page is an example of a Data Element Data Dictionary.

Finally, the fifth page is an example of the Facing Page

Text for a diagram.

it S S A a2

Mail

UTHOR : Capt Steve Johnson DATE:11/86/87|READER
PROJECT ECS REV: 1.1 DATE
commands
Cl 3
l crt info
fnput text Create -
- Mail user files _9‘
user files new mai1l 02
12 1 “““““‘—‘———‘}
Deliver bb notice
bb reply | Mail 03
oK) t mnt{(rasponss ert info
| L =2
‘ ~———egAccoss

Juser files

NQOE - TITLE: Provide Mail NUMBE..: C-3

ot = ‘ . LI Tl g Bin Shagin AR LA 4 LLLn T ..l..; -n\.\...-‘-. 1 X \.~ ...V. .\n. H<M. t-.ﬁ\-\v v s G % R AP -..\
[44
€-) YIGWN LitW 8pjAoag S3UIL * 300N
- -
s8{)) Jesn Liew
35830y ———.
[342 ~ ¢
vy A €0
asuodsa. ew
£0 o L ew A{des qg
83110u a9 ,_ J8A1 | 8Q
1 L 2I
20 [1ew mau sty s88n
68|14 49Sn el L u
10, - _ LILL LY aavrra g
[JUTER V5 _
|]
spuewun
I1vg T 1A 23 1230044
H30v3INl8/98/11: 3tvg unsuynC aserg 1dey "HOHLNY]
’ ot by , . LA «-4\ e Al I-d- .4 e n Y
AEL B AN SRR - AU I A - AR LTI S Y

NI R

E9
0w H W

TACTIV

51 e O
o

A XN

Wy

rses user’s

nd pa

=2
2

By
s

20

Q1
o
Y4

3 Mo

[olN0)]

el 8

maildl

rve

S

—~rre
e e X

1]

o)
-]

q
0
y1 O
O o0
(Y,
£t
O
)
e

Ma:il

ide

Prov
NT NUMB

4

e

ER

IREME

£QU

Y
Q

)

:Changed "bulliten board"

) ~
fa] @
— ()~
.N6
O
..H/
(O
4
NN..
O O
(R}
U U) i)
o e
{1 {ad L
el N
ALy

Johnson

Capt Steve

[
CA

v

L {

e @

L

| R

T

Lo s

Yy,

e
q

|
NAME : new masil

”YDV : DAT
ROJECT :ECS
DESCRIPT ot :New Mail :s

new message genera

the user that includes the appropriate header
as well as the body of the messacge.

CATA TYPE
MIN VALTE
MAX VALUE
RANGE
VALUES

DPART OF
“OMD STTTON

MU el oy

ﬁﬂMerm

[ORFAS S TP

~ e o~

SCURCES

R:LA”ED REQUIREMENT NUMBER
ION 1.1
'“N CHANGES :chanced
11/06/87
AUTHOR :CZapt Steve Jonnson

"‘"fa II-'{I J{-ﬁf-

y

\ - s .
* ‘ AL rovicde Mail

Abstract: Provide Mail allows the user to build 2
o message, access any message, and transmit any
> message.

st _T_ & 8 a2

s activity builds the apprcpriate q

Thi
the message. '

ALl
N fields of

cpriate user. B

O b
t
oy
o o
]
'Y
‘U

This
eplies and sends them

v
Y
03
03
O
U

g .- . . ; , ; \
N AL3 This activity takes inputs and user files
7 ind parses user’s commands to allow access to his mail. g

e

A

LY

s‘

i
2
Sa
e
!E Y
o .
l Rt

.

g y
! .
.

L]
= -
. R
‘.4- ‘e

Y
. -
- g
l\' "
p)

v N
‘b .
d

>
e ;
.o

ok

Lo R

704

a

b

" yva"y
I‘-.

rrY
a2 a

"y»,

54t
R

-
MR

T
.

-

.
I.IJ

[IR

s
LR Y

Appendix C: File Format Definitions

This appendix defines the file format for ".gph

and " .dbs" extension files generated by the tool.

".gph" File Format
The purpose of this file is to store the graphical
information not found in the data dictionary, but

1s needed to redraw the diagram. Figure 21 is part ot a

.Zph"” extension file generated by the tool. The graphical
portions of each of five graphical entities (box, header,
squiggle, footnote, and line) are represented in this file.
In this file, all blank entries are noted with the string:
$$NULL$$. The format for each graphical entity is specified
in the following paragraphs.

Box Entity Format. The activity box information 1is
stored first in the file. The information is contained on
one line with the line of information beginning with the box
identification number, "1." Following this number is the
screen coordinates (x coordinate followed by the y
coordinate) of the lower left corner of the activity box.
The remaining part of the line is treated as a string and
constLitutes the name of the activity box.

Header Entity Format. The project name and diagram
number are the entities from the header structure that are

saved in this file. This information 1s stored in two

.
»

b
»s
o
N 1 128 177 Add Dot
I 228 251 Add Arrowhead
1 328 324 Add Tunnel
1 125 398 Add Squiggle
1 521 473 Add Branch
1 616 546 Add Join
2 C-5
A Tool

221 97 207 93 213 499 200 941

603 484 630 458 630 464 639 457
748 527 748 520 155 524 756 517
312 166 276 176 286 167 263 166
504 311 166 3256 471 315 453 315
596 384 561 399 569 387 551 386

LW W W WL U

- 100 240 368 239 378 243 358 241
- 139 65 15 526 1
. 182 66 218 527 2
- 675 462 501 534 3
193 63 649 418 14

5 494 84 713 509 5
- 10 27 144 75 144 | 512 12 139

Il
- $SNULLSS
- $$NULLS$SS
) User Inputs
B 102 75 144 128 144 0 4 -1 -}
i $SNULLSS

$SNULLS$S

$$SNULLS$S
o $SNULLS$S
‘.i
q Figure 21. Example ".gph" File
- litnes, the first line beginning with the header
X identification number, "2". Following the identitfication
T number on the first line is a string that represents the
) diagram number. The string on the second line represents
>
o~ the project name.
b
A S-suiggle Entity Format. Following the header
~
™~ information is the squiggle information. Each squiggle
ﬁ entity is described on one line with the first number being
[]
s
N —
b\
®
e L e e L e b 4 e L

- LY . Y AN y £ ¥] o ! ki !

(1.9¢

-

-

the squiggle 1dentificat ion number, "3". Following the

1dentitication number are four x and y coordinate pairs that
make up the three line segments of each squiggle 1 ine.

Footnote Entity Format. . Following the squiggle
information in the file 1s the footnote i1nformation. Each
footnote entity 1s described on one line with the first
number being the footnote identification number, "4".
Following the i1dentification number are two x and y
coordinate pairs representing the lower left corner of each
footnote box. Following these coordinates is the character
label for both boxes.

Line Entity Format. The line information is the last
information stored in the file. Each line segment is
described 1n the file with five lines . The first line
begins with a line identification number that is greater
than or equal to ten. Following the i1dentification number
are two x and y screen coordinate pairs representing the
start point and end point of the line segment, respectively.
The next two numbers represent, first, the line’s
combination of begin attributes, then the line’s combination
of end attributes. The final two numbers are the x and y
screen coordinates of the line label, 1f 1t exists.

The remaining four lines store the various labels that
are associated with a line segment. The first of these
lines (second in line entity block) is the label for the

ICOM code that may be associated with the beginning of a line

» P A A a1 V4

L AT « - - -‘_ A A A TN
\ \;@., ,._ .r«’,.“: ‘.~1. S _‘r- "\.‘.‘ TR ~.'l\<‘.~“ e ‘_);‘_‘\w_,\';‘\v W -
t-t ¥ 49 ¥y B

rl ‘l Yy Cy

s e

LI N TR i 4

N

- -

P

<

LR

segment : Input, Control, or Mechanism. The second of

these lines 1s the output 1COM code associated with the end
of a line segment. The third of these lines 1s the TO-ALL
or FROM-ALL circle label that may apply to the line segment.
The last line is the label that is associated with the [ine
segment. . Again, 1f a field 18 not specified for a given
line segment, the "$$NULL" string is inserted into the file.

Finally, all ".gph"” files contain a "0" on the last
line of the file to signal that the last line has been

recorded.

".dbs File Format

The purpose of this file 1s to store the data
dictionary information in a format capable of being read in
by the database management tool. The file consists of a
session header, a list of activity data dictionaries, and a
list of data element data dictionaries. Kach section is
separated by separated by a unique delimiter. Figure 22 1s
an outline of the format for a ".dbs"” file. The following
paragraphs describe the format for the session header and
the format for storing a field for both types of data
dictionaries.

Session Header Format. Figure 23 is an example of a
Session Header, identifying each of the needed fields and
the order they must appear. Note that the first line may

have two different character strings. 1f the diagram does

not. contain sufficient information for the database manager

.-

PN
€ o o

SESSTON

#@@BEGIN@@# or $$3$$LOCALSS
--~-SESSION HEADER---

###ACTION TYPE##4#
@##START#4@

--~ACTIVITY DATA DICTIONAR

Q@ 4STOP# 4@

o

o]

o
- ###ACTION END###
###0OBJECT TYPE##4#

FILE

$$ /¥Begin filety

/¥Begin activities list¥x/
/¥Begin an activitytx/
Y
/¥End of activitys/
/¥*More activitiesk/

/*¥End of activitiess/
/¥Begin data listx/

@##START#4@ /*¥Begin a data item%/
--~DATA ELEMENT DATA DICTIONARY---
@E#STOP# 4@ /3%End of data item%/
g /¥More data items¥/
###OBJECT END#4#4# /¥End of data items¥/
$t@@ENDee# /%¥End of the file%/
Figure 22. Session File Outline

tto store and recall the data di

"$$$SLOCALSSSS" is

with the database manager. it

complete, the "#@@BEGIN@@#" str

database manager will accept th

Data Dictionary Field Form

an activity element data dict o

element. data dictionary <t

inserted to make the file

ctionary information,

incompat 1°

the diagram 1s «sutt.
INg 18 tnserted o

e filce,

at . It

LI S

RD-A198 618 ﬁ GRRPHICS EDITOR FOR STRUCTURED vsIs
OURRV(U) AIR_FORCE INST OF TECH WR GN
L _OF ENGINEERING S E J C 87
UNCLASSIFIED ﬁFlT/GE/ElG/B?D 28 /G 12/5

NL

IS WITH A DATA 272
l RTTE SON

T e ww Wy

ot Nl © :
== == Wl —_ =
© _— [
R EE 3
= = = 2
o . EN) 5
< . 2
R E F YT “__I___ 3
— a
_ W
—— @x
O. —_ To) . 5
— — N g
— <
g
t ~ v v . = rrx A S
T oY, A AANS Sy Y YA LA AP .
\ﬂ-‘i. ;I~f .f.\)hf 5= o< S i X e AT n-v-.nn-,vi- ll.‘.ﬁ

NAT TNAL BUREAY OF STANDARDS - '96% - *

9
“
.f:-f

-

®
-.‘ﬁ\;{\:\
B T

F
e

ya N
LI W]

A |

S 59
[A

NI

v
N A

s

i

b 5

2
1]
»

o
N

specified by seven lines in the file.

example of how one field is stored.

is an

Figure 24

#@#HEADER BEGIN#@#

SESSION CONTAINS ALL NEW RECS

SADT
SDI
REQ
BOTH
Wed Nov 19 04:16:56

Wed Nov 19 04:18:40
Add Dot ACT
Add Arrowhead ACT
Add Squiggle ACT
User Inputs OBJ
User Outputs oBJ

#Q@#HEADER END#@#

/*TYPE OF DATA

1987
1987

/ *Name
/% ACT
OBJ

/%

/¥SESSION IDx%x/
/¥TOOL 1D %/
/¥PROJECT NAMEx%x/

/ ¥PHASEs%/

(also ACT or OBJ)%/
/¥START TIMEx/
/$STOP TIMEx/
/¥ENTITY LISTx%x/

Type %/
ACTIVITY %/
DATA x/

Figure 23. Example Session Header
diname /*DATA NAMEx/

25 /*FIELD LENGTHX%/

N /*MULTI~-LINE 7%/

1 /¥*NUMBER OF FIELDS%/
XX /¥DIRECTION--N/AXx/
MECH /%ICOM TYPE x/

File Format

/¥FIELD CONTENTS¥/

Figure 24.

C-6
o N Y _*_
N*x'v' “U“ 'x’x’n’\’-’ N

Example Activity Field Element

7’
_.’
.‘/

[Yoy

AT
af

NAME

data dictionaries. The database manager does

the field information to appear in any order,

tool keeps the order the same as that for the

readable"” format of the data dictionary. The

the DATA NAME’s saved in an activity element data

dictionary:

1. aname
- 2. number
- 3. description
4. diname
- 5. aliasname
a'.; 6. comment
7. reference
. 8. reftype
E- 9. version
- 10. date
11. author

|

The following are the DATA NAME's that are saved

[~y
j element data dictionary:
1. diname
2. description
=" 3. datatype
) 4. low
- 5. hi
YA 6. span
7. value
i 8. hidiname
| 9. lodiname
10. aliasname
11. comment
N 12. wuoereused
13. version
14. date
; 15 author
[S
i ¢
.
K)
» -
(=
]
B e M T e T

however,

. Each field of the data dictionary has a defined DATA
according to the relational schema defined for these

not require

this

"human-

following are

in a data

'"Ir ‘-r * l':)‘

" %

‘p

‘_\-

J‘

)

N
)

| o ol it o

[3

[N
- w e

X _x_ A_=2

L

R

Y

L

83
g

1

Y Sy

AN
oo In 4

D

2

LR
*
LS

» -
5

LN

T, R

- . -

Appendix D: Configuration Guide

Tﬁe purpose of this appendix i1s to specify the
procedure for generating the executable file, "SAtool.” The
executable file for this tool was generated by using the
UNIX "make"” facility. Using this method, changes to the
source files are tracked and recompiled as necessary before
linking the files together. If changes to the globals.h
files are made, the "make" facility does not know to
recompile the affected source files, it is the programmer’s
responsibility. Figure 25 is a copy of the file called
"Makefile."” To use this file, the command "make" is typed
at the system prompt, causing any needed compilations and

then linking of the files.

OBJECTS = main.o datadict.o messages.o
boxfunctions.o headerfunctions.o editboxfunc.o
miscfunctions.o addline.o figures.o endfuncs.o
find.o morelinefuncs.o linelabel.o moreddfuncs .o
ddsearchfuncs.o savefuncs.o fptfuncs.o sgglefuncs.o
fnotefuncs.o moresave.o screendump.o readfuncs.o
session.o

HEADERS = globals.h

ALL, = sad
CFLAGS = -0
LIBS = -lsuntool -lsunwindow -Ipixrect -Im

sad : $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBS) -o SAtool

Figure 25. Makefile Format

=1

[199

N

e

s

PP

¥,

'
)
'»

r27
& A A

LA |

lg
*

L4
'

Ly LA - « 4‘
Q};vnxjs\\.v.wnxk *\

Appendix E: Summary Paper

Introduction

The requirements analysis phase of the software life
cycle is an important one. The Department of Electrical and
Computer Engineering at the Air Force Institute of
Technology (AFIT) has established an analysis methodology
for this phase of the software life cycle that consists of
using structured analysis (SA) diagrams and a data
dictionary. This paper describes the integration of these
two techniques into a computer automated tool for the
purpose of improving the software requirements analyst’s
productivity.

An analyst's productivity can be improved because of
two significant reasons. First, several pieces of
information are needed for both an SA diagram and a data
dictionary. Separate, these two methods create a
significant duplication of effort to enter the information
twice. The integration of the two methods eliminates the
extra effort. Second, the analyst is freed from much of the
effort needed to create the diagram by hand (e.g. drawing
straight lines). This freedom is received by using a tool

tailored for this specific purpose.

N~ '&‘N NN

- W,

.f

ZLLL LA e e

Pyl i i S 90§

ety WV

LSS

s _*
S %

‘.. "I

LY

Background

Integrating two approaches into one tool divides the

tool into two natural components: the SA diagrams and the
data dictionaries. This section describes each of the
components.

SA Diagrams. The SA diagrams use a graphical languayge
that i1s derived from the Structural Analysis Design
Technique (SADT) (SADT is a trademark of SofTech, Inc.), and
are accompanied by facing page text to assist in the
understanding of the diagram. Rectangular boxes and arrows
are the primary graphical constructs used in an SADT
diagram. The boxes represent the decomposition of the parts
of the system being analyzed. The arrows are used to
describe how the boxes interface between each other on the
diagram. The graphical language consists of English text to
label the diagram and 40 graphical constructs to describe
relationships (SofTech Inc., 1976:4-4).

SofTech proposed that the SADT methodology could be
applied to many types of problems in addition to software
requirements analysis (Ross, 1977:17). The U.S. Air Force
Program for Integrated Computer Aided Manufacturing (1CAM)
adopted a version of SADT from SofTech and called 1t ICAM
Definition Method Zero or II)EFO. Now the Air Force uses
this similar structured methodology to improve the
communication of people who use computers to improve

manufacturing productivity.

=

UG e e T TS T il
.v')‘.'I‘.J\I I_.J"‘f.‘ ~ o, .,

At AR
-~ L SN e)

Data Dictionaries. The purpose of a data dictionary
to manage and document data. According to Lefkovits
(Lefkovits, 1977), using data dictionaries provide many
benefits including: reduction of administrative effort.,
reduction of data redundancy, and reduction of system
development, costs. Regarding software requirements
analysis, Leong-llong and Plagman suggested that data

dictionaries are an excellent vehicle for maintaining

1s

documentation. Furthermore, they recommended that the data

dictionary system for producing documentation be automated

to reduce the monotony ot the task. (Leong Hong and Plagman,

1982:50).

Requirements Definition

Requirements for this tool were based on previous
research at AFIT. A data dictionary editor existed that
allows the user to type and save the information on a
workstation and independently store the information in a
relational database. Rescearch accomplished in parallel wi
the tool development developed a data manager to save and
recall information in the database. That effort specified
standard file format for accessing data dictionary
informat.ion generated by the tool.

A prototype tool to integrate SA diagrams and data

dictionaries was built at AFIT in 1986. This prototype

th

a

implemented a small subset of the entire SA language syntax

used by SADT and IDEFO. To extend this prototype effort,

1t

e

wids necessary to examine the SADT and IDFFO graphic syntaxes

and identify a necessary and sufficient language for
implementation of this tool.

The prototype as well as this tool were required to
carefully consider the human/computer interface aspect of
the tool because of the interactive nature of tLhe program.
Spectitically, the following rules faor developing

human/computer interfaces were considered in its design:

1. Keep the user motivated.

2. Break the input process into parts to achieve
"psychological closure.”

3. Provide positive feedback to the user.
4. Minimize memorization required by the uscr.

5. Provide a vicually pleasing display on 'he
Sereen,

6. Minimive the response time of Lhe Lool.

Figure 1. Human/Cemputer Interface Requirements
Source: (Urscheler, 1986:21).

Finally, part o Lthe tool's function was to provide
hardeopy outputs of the various products maintained by the
teol. Therefore, it was required that the tool i1mplement a

me ans to produce the SA diagram, the accompanying facing

page text, and the data dictionaries generated by the tool.

,.:. Description of the Tool
-~

Hardware Decisions. SUN workstations were chosen
' because they met several hardware requirements. Six SUN

workstations were available, each having a mouse input

device for manipulating the graphical constructs of the SA

E diagram. Each SUN has a large display monitor to

- accammodate an uncluttered user interface. Finally, all the

EE,. SUN workstations are tied to the AFIT computer network,

- important for the transporting of data dictionary

-

S information.

f.‘:: Software Decisions. Based on the availability of the

“ SunView package and the desire to use certain software
modules from the prototype again, it was decided to proceed
with the SunView package. Also, the tool was implemented in

. C because SunView supports this language.

:f:' Human/Computer Interface. The design of an acceptable
human/computer interface was of primary importance in this

effort.

The screen layout consisted of five areas or windows as

::: shown in Figure 2: the Input Window, the Message Window,

:;_ the Selection Window, the Diagram Window, and the Data

™ Dictionary Window. The Input Window is where the user

E.\l enters all text labels for the SA diagram. In the Message

> Window, the user receives instructions, feedback, and help

;: messages. The Selection Window provides a mechanism for

:.; choosing one of four menus of actions needed to build an SA

)

g

: -5

T
~g

.

o,

»

L R P e et
O T T T

¥

A

.

B

e
K A &

e

P
Pl

L

'y
o

s

e

A

x

diagram and data dictionaries. The Diagram Window shows the
current SA diagram and the Data Dictionary Window is where
data dictionary information not derived from the diagram is

entered by the user.

SA tAD Touib -
INPUT: DISABLED
MESSAGE: WELCOME, Please make a selection.
teall O o
LUTHOR |DATE : |READER
SROJECT |REV : {DATE
Ang
208 ivms NUMBER

Figure 2. SAtool Screen Layout

- Al AT T N T _ ..
.’t"' '\.llJf\ -ﬁ.r\f f,_-"-"-’.\';.-. .J,.'.’./-\,\,..', A : {\'_
() N . " :

P

- s

. e e .

e

A menu system was selected because i1t solved several
rules for a good user interface. The menu selections are
grouped according to the major function they provide:
editing a diagram, editing a data dictionary, displaying
facing page text, saving the diagram, or executing system
functions (e.g. changing the working directory). Within
each grouping, the menu selections are structured in a
hierarchical manner that matches the functional
decomposition of the tool.

Data Files. The tool is capable of producing five data
files, two that save raw data (graphics and data dictionary
information) and three that save output products of the
tool. Each file has a unique file extension.

The first two files save the raw data when the “save”
menu option is selected. The first one contains graphics

information and is labeled with a ".gph" extension. The
second contains the data dictionary information in a format
readable by the database’s data management system. This
file is labeled with a ".dbs” extension.

The remaining three files are generated at the option
of the user. The facing page text for a diagram 18 stored
in an ASCIT file with a ".fpt" extension. The data
dictionaries associated with a diagram may be saved 1n a

file with a ".dd" extension appended to the tile name.

b

T,

«

" S

PNy

These can be printed on any standard line printer. [inally,
a copy of the diagram on the screen may be saved in a file
with a ".dmp” extension which is in a SUN rasterfile format

and must be printed by a printer that supports this format.

Evaluation

After designing and implementing the tool, it was made
availlable to two graduate level software engineering classes
for use and evaluation. Thirty-three students were assigned
to make one diagram using the tool and to complete a
quantitative evaluation of the tool based on that
experience. On a scale from -1.00 (maximally dissatisfied)
tao +1.00 (maximally satisfied), the user scores averaged
0.295. The scores ranged from -0.182 to .682 with a
standard deviation from the mean of 0.294. On the average,
the evaluators used the tool about 138 minutes before
completing the evaluation.
Conclusions

The purpose of this thesis was to integrate the
structured analysis and data dictionary documentat ion
me-thodologies into a computer automated tool to improve the
requirements analyst’s productivity. The progress of this

ceffort was highlighted by the following milestones:

n‘r

. .

AP AP

P

Analysis previous efforts including the
reusability of software from the prolotype.

Identification of the necessary and sufficient
graphic syntax implemented by the too!.

Successful design and impiementation of
tool's software.

Evaluation of the tool’s usefulness using
questionnaires and statistical methods.

:

S .

K
[

i

o ey

Appendix I Requirement Analysis Diagrams

£ 3

o &

b~ The following pages contain the SA diagrams for the
oy
- . . . i
- requirements analysis done tor this tool.
;.:. ~,
s
o
e &
'y ",‘ N,
.;5
S
B \) .‘-:
S
o {:
N
. -
l‘
oo
SN
SAGE N
ol s
@
NS
h :-\ o

l"'.
L=

~.-

b ~
B>) »

* .\t » ._
N
-t .

-
L~ "
-‘.

e

,"I."

v s M
ALl S

ST @ e
X

Lr o

3

b,

.. .

[} L%

=% ﬂ

o

[} L%

B NG
3

D

’ "

"' "ﬂJ.

p

.

.‘0' 5':;

* LY

4 F-l

ot

N

L

v

ree s

A-O

Abstract:

Provide Requiremant Analysis CAD Tool

Provide Requiresment Analysia CAD Tool
by which he i1s @ble to draw activity SA diagrams.

From these diagrass.

page text and Dats Dictionaries for Activities end Data are generated.

JAUTHOR : Capt Steve Johnscn DATE . 18/1/87 |READER
PROJECT: SA Tool REV:1.8 DATE
DD Definitions
Usaer Inputs Provide Facing Page lext
SA SA Diagram
User Filesg Tool CRI Infg
NODE : TITLE: Provide SA Tool NUMBER: C-1
A-9
F-2

A
. r“!“'ﬁ.r__a,-r\.

N

prov.dess the user e sechaniss

fecing

Ie.

-

ARG RASTG

vy 7
P

{f‘.

X%

-

.
’

TFI', ‘.’

C
A

Y

%

1

A0 Provide Rsquirasent Analyais CAD Tool

Abatract: Provide Requireaent Analyasis CAD Tool
by which he is adble %o drew asctivity SaA
Dictioneries for Activities and Detes.

,

Al Create SA Diagrass gethers the user inputs end converts thes into
graphica. inforsetion representing the diegres. Throughout the proceesa. the
user :s i1nforsed of progress through updstes on the CRT acreen. The user say

e.80 use an ex.sting file Of user i1nputs tO gererete a diasgras. Deates structures
are crested fros which i1nputs to tha dats dic2ioneries mey be gathereo.

providea the user s sechaniss
disgrease and generate Date

A2 Creete DU taxes the grephica. inforsetion pertinenz to the datas
dictionary (acliviiv Or deata! 8.0Ng with user inputls to Creeste the asppropr.aste

Gate A.ctionery eccorc2ing to the AFIT dazas dictionary formsat. The atatus of the
proceas (s »e.ntainec on the CRT.

A3 Creste Fac:ng Page Text comdbines the description fleld of the datas
dicT:onaries for activities wiih the Shanges ZJesired by the user to produce s

facing pege textl. The staiua oOf the pProcess is msinta:ned on the GCRT.
JAUTHOR : Capt Steve Johnson DATE . 18/1/87 {READER
PROJECT: SA Toal REV:1.8 BATE
SA Syntax
SA Diagram
User Files [Create g 0
2 SA CRT Info
User Inputs Oiagram S 04
I 9 1 r_ Y
‘ @ 0D Format
5 Create GRT Info
«00 00 Definiticns
L. 01
2 ")
FPT Format
Descriptions
A Create K
Facing_Pag {CRT Infao
T — -
oxt / a2
Facing Page Text
D oo Inputs from Otagram
NCDE ; TITLE: Provide SA Tool NUMBER: C-2
a8
F-3

s e
.

e Al Creazs SA Diegrass
L] .d
b".. * Abstract: Create SADT Diegrass gethers the user i1nputs anad converts thes tnto
. grephical infarsation representing the disgres. Throughout the procesas, the
W A user is (nforsed of progrees through updastes on the CRT acreen. The user amey
i . 0.80 vae an existing fila of usar inputs to genereate s diegraeaam. De%e structures
) . ere creeted fros which inputs to the dete dictionaries meay be gethered.
L . All Provide Usaer Choices taMes the user‘s requeats shd cdetaersines the
Y AppPropr.ete acion to take. Th.s process continues until the user expiicitly
S reguests to quit.
LS
Al2 Add to Disgresm tekes the uaer’s request of graph.ca), entities to add to
. the disgram and updates the current d.egres. The uplste 18 made aval.able for
! data C.istionary updetes. Alsoc. the user :s kep: adreas: Of progress through the
' b use of c.agras upleies Or the acCreer, Orror sesssges. anc proapis.
i Al3 Eoi1t Ex:ating C.egram takes the user’'s request to chenge the current
:| .:: d:agrss ano carries out the funciion according to the AFIT Sa syntax. The
; ‘.“‘ change 1s nade aveilebie for dets dicriOonary upcdates. Al ., the user ia kept
M -~ abreast of the Progress by updat:ng the diagreas 5N the 8Creer, error sesssges,
and prompts.
el
K ,“ Al4 Provide Input/QOutput takea the user’a requests to reed end save files
y
" .-: and perforess %he appropr.ate operastion. In the csse of & reed, the esctivity
R et-empts to loec an existi:ng file. The user monitors the status of the
‘ opere%.on through 8creen Lpdates, Error »essasges. and proaprs.
K
1
- JAUTHOR - Capt Steve Johnson DATE :18/1/87 |READER
PROJECT: SA Tool REV- 1.8 DATE
. Sh c1
\ User Intarface SA Syntax
; ti User Inputs Provide
' —,E—-U—d‘Usqr A @ I Qutt.-.
1 . . Chotces —— -
: 2 | o o '
“u,] ption/fintshed
> 4 @
Adag
' to DD Inouts
Diagram a3
2
L) o €Y
3 Edit D Inoyts
i - Ex1sting @ CRT Info
S Dtagram 3 02
Ky
» ..'
. File Name ’;;::13' | :
. g .
S User Files Output _E_Mms_.m
4 :"‘ 2 4
£
Selaction/finished @Screen updts-errs-prompts
‘ - Add Option/finished Tprompts-error messages
) $ JJEdit Option/finished
ot
NODE . TITLE: Creats 5SA Diagrams NUMBER C-3
al
2, .-"
-
»
) .'.*
’l
.
N
AN
; '::'
! "u® F"q
)
L |
t

- - - " - - R Ty 2T A et e AT AT R T AT AT AT A By
; R AP R A T Y R R T TR N g Y T T NS B RT P P P A P B T T

)) f.r‘ e q’ - (! LSS LA LY Py A N AL
e ".:‘.' B X ~~ ,.'Q..o A o K iy W o W W B W i o (A M o ™ Y

ARt h b A A

[%9
K A.2 Add to Diegres
\‘. +
Abstrect: Add to Diegres takes the user s request of graphicel entities to add
to the diagrss aend updates the current d.egres. The updete (s mads evai.sb.e
) for deta dictionary updetes. Ailso, the user 18 Rkept abreasst of progress through
the use Of diegras updetes on the acCreen, Orror Resssges, and proaspts.
AiZ. Add BON taxes the user comamands end locatas & new Box along with the
.. appropriate labels on the existing SA diegrea. The upcate is sade avai.ed.e
r{ for detes dic2iOnary gererat.on. The user controls end sonitors the diegras
LS through the use of updstes to the CRT,
>

ALIZl Add Line tares the user cosmaends and lO0Cetes 8 newv line and easoc:ated
iabe.s 2n he ax:st.ng SA di:agrem. The upcats 18 P8cde ava.l!able for deta
qictionery generastion. The user Scniro.s end BONRIOore %he diegras through the
vee Of upaates o the CRT.

ol

Al Ad¢ Ninor Coratr.=%s “akes the user cOBPenas and edds the minor

C* construct of choice to the currant SA d.agres. The user controls end sonitors
aj the d:egres througn the use of the updetes to the CRT.
A..% Adc Hasder Info texes the user cchsends and iNputs end .ede.s the
-— disgres hesders. The inforsetion 1s mede avei.able for creeting detae dictionary
\; eniri:es. The uaer contro.s and moritore the d.egres etestua through the use of
S updetes to the CRT.
Ll
L
1
ol
<. UTHOR Capt_Stave Johnson |DATE 18/1/87 iREADER]
T PROJECT 3A Too! REV 1 @ DaTE

Add Option
SA Syntax [C2

=
o e

A
Jser Inouts | ad D0 Inouts

. - Box CRT Info a1
n ot i o
i 1

B
—_— ‘Lm- Syntax

|
|

«'ne Jption
Agd CRT Info
. Line 00 Inputs | a2
. oy,
. Minor Construct Syntax

Mirgr Construct Option

y
. [*Minor CRT Info |
. i Congtructs rHeader Syntax
g l 3 - CRT Info
y
!
i

Y Y]
Heacar Ootion j f/

~
\./. Add)
R Header "" |

Info v —

4 {00 Inputs
e
.
L
oot IYYTLE' Add to Diagram NUMBER -4
-
hS
F-5

~
4
>

o S, <.
\$-.’_ Y L5 L
s] L]

Ly
3

Wmmwﬁwﬁmwww.-

. AL2) Add Manor Constructs
'_ Abstractsa: Add Ninor Constructs takea the user coasands end sdds the ainor
o conatruct of choice to the current SA diegreaa. The user controls and monitors

the diagras through the use of the updetes to the CRT.

Al123. Add Arrowhead takea the user’'s cossends end locstes en errowhead,
or.ented properly, on the disgrsa. The user eccospiishes this through CRT
updetes like prompts, error seasages and d.egres updetas.

A1237 Add Dot “akes the user s comsands and locstes & dot on the disgres. The
user eccomplisnes this througn CRT updates like prompis, error seaseges and
d.egres upds-as.

A3 Ade Tunne. takes the user’'a CoOBmand and locaies & Turne. syebol, or:ented
proper.y. on “he d.egrs The uaser sccompilahes this througn CRT upcates like
Prompy.s, error sessages and d.sgram updatas.

AL23s Ada Squigg-.e “ekea the user’'s cossand and loceies & squiggle on the
gram. Tre user eccompl.ales this through CRT updates like proapts, error
a@astces andg d.agre’ updeles.

A1235 Add Brench takes the user’'s command and locetes & Branch (rounded corner)
at th~ Jocet:ion end on the line srec.fled by the user. The uaer sccosplishes
this Lhrough CRT updates .ike proapta, error messsges and disgrea updstes.

AL2F Add Join takaes “he user’'s Czasends and joinNs & line to another line
spec:f.ed Dy the Lser. The user accoapilshes this through CRT updatea like
Prompia., error sesssges anc d.agram updataes.

|<UTHGR Capt Steve Johnson DATE:18-7-87 !READER {
PROJECT SA Tool REV. 1.0 DATE T
@icy E!CZ @prompts-updts-err msgs
) Y [5] prompts-updts-err msgs
t ' —_—
dot oot on' £\.\ dot syntax 3
Aad prompts-updts-err msgs
23 : t
3:__:-&*‘ Dot 2 N, arrowhe@ad syntax
. !
| L]

‘ laga prompts-updts-err msgs

‘____‘lArrcuhem
-? B tunne) syntax
2 ¢ " ¢ tunnel option

|
|
arrownaad option)
|
‘

Add prampts-updts-err msqgs
Tunne! |
fy sauiggle syntax
k] I/ quiggle optfon
Aad prampts-updts-srr mags

B I e

Squiggle ‘B branch syntax
4 l}p branch option

Agd

[' Branch

| i

+

I Jjotn syntax’ [Add
- Jotn 8L,
minor construct option miror construct symtax ~ 01
[lyotn option 6 | crT 1nfo
NODE TITLE Add Minor Constructs NUMBER: C-5
a123

l..‘-

ils

.

A13 Rait Exieting Disgres

Abstrect: Bdst Exiating Diegren takes the user’s request to change the current

diasgras snd carries out the function according to the AFIT SADT syntanm.

change 18 dade svasiladle for dete dictionary updates. Also. the user 1s kept
abreast of the Pprogress by updeting the diagras On the 8Creen, error besseges.

and proapts.

Al3l Edit Box takes the user’'s requests and cossends perfcras the operetions of
the box. The changes are nede
The user accosplishes

aoving the box, Geleting the box. or re-.abe.iing

evai.able for updating the current deta dictioner.es.
thias through CRT updates like pProapta, error aeassges end diegras updstes.

A.32 Ed:t Line texes the user s req.ea-s ans CoR»anda and performa the
orerer.zns of cShanging the i(ine .edbe.. mOViNg the llne, acd.:ng & branch,

e point to the line, de.eti:ng & point on the iine,
changes are sede avaliab.e fOr updeting the current dee diciioner.es.
acccep.ilahesa thia through CRT updates like proapts,

updestes.

Al33 De.e%e Ninor CoOnatiructs tekga the user’'a res5.ee%s and =oasands end

de.e>es the apecif.ec conastruce.

AL34 Edi: Header Info taxes the user’'s reguestis enc coasands and changes the
apec:.f.ed heasder (a’. The a.2ered infcorasetior 1a sade sveilad.e for upcating the
app.isadb.e Ceta diStionarieas. The user eczomp..a~es t:.8 “-rough CR™ updatea
LiMe Proepta., error aeassges and d.asgras updates.

The user acccep.lishes this through CRT
Li%e Prompia, error sesasges and d.azram updetes.

adding
The

The user

Arror sesssges sna diegras

and de.eting the line.

upcszea

JAUTHOR Capt Steve Jonnson DATE:18/1/87 |READER !
PROJECT SA Toa! REV - 1/8 DATE i
c1
34 Syntax
00 Inputs
CRT Info ’
| B v |
[SE— ern Syntax ‘
Eatt 00 Inputs |
t I 2
Line CRT Info I !
2 o |
Delete l
Minor el 1l
Conuructjs - 2

Headar Forma

QI Mtnor Construct Syntax
Zlupdates-ecr mags-grampts
T updates-err msgs-prampts

NOOE TITLE Edit Existing Diagram
Aall

NUMBER C-8§

o o a
\’\"-"\ '\',\

P APAY Bal T B

]

TR Ay

N

‘a’s

A
)

™ & T e MR E R RTR T &7 4T e T T

N
I“.
o
e Ale Provide lnput/Output
Abstrect: Provide !nputM)utpu{ takes the user’ s requeats to reed and seve fil.aes
' end perforas the eppropriete operation. In the cees of ¢ resd, the sctivity
. etiempts 0 i06d an exieting file. The user monitors the ststus of the
operstion tnhrough ACreen updaetes. Srror aeassges. end proespta.
. Al4l Reed Stored Anal.vs:s s>temp:a to read the file name apecified Dy the
'.: user. The usar monitors the succeas or fea..ure of “he 2perszion with screen
4 upcdetea, error »eeseges, and prompts.
Al42 Seve Current Analyais attempls to save *he exi182ing ana.ysis with the

E file neane specified by the user. The fi.e cons:sta of the dats to generats the
* current SADT diagras.
\"I
b
o
W
\':
-
"
v
e JAUTHOR Capt Steve Jonnson |DATE 18/1/87 |READER
3 PROJECT SA ool IREV 1 @ DATE
.y

|

’ Read

] Jser Filas Stored orampts-error wessages

| 2 Analysts ’

1

-~ Valtd File Name
_—

-

’ Save prompts-error messiges
F''a Name! I

urrent SA Jtagrams

i
Ana y|||2 32

| i
‘ ’
|

INODE TITLE Provide Input/Output /NUMBER 0-7
a1d

'

T PP T TR U T TR TR TR VTV L R LN CRA RV RVE R AR

43

A2 Create DD

~ %
[V N

Abatrect: Creste DD taekea the grephical inforset;on pertinent to the dete
dictionary (activity or dets) elong with user inputa to creste the approprieste
dats dictionary eccording to the AFIT dete dictionary forset. The ststus of the
process is ssintained on 2he CRT.

-

2. Se.ect Entity spec.fies accorcing to the user input the type of dete

.'\' dictionery to be crested.
N
)
- AZZ Gezher Inputs gets the Jeacriplion aend i1nputa from
the grapnlic picture tc gererste a dref: Geta dictionery according to the AFIT
formez. The user contro.s &nad acn.tors the status of the operetionr vis prospts
. enc screer Lpcates.
N
- A23 BRoai1t DD gets the current draft dets dictionery and persits *he user to
edit 1%, The eltered deta dic%ionery if the finel copy for which the user is
- given the op2ion to save. The user cONtrols and sonitors the stetus of the
:\' operetion via Proepts, Orror sesseges. end screen updates.
N
A2e Save DD receiveas the altered date dictionery entry and gives the user
*“he oplion to save 1t ss & separeze file. The description portidn of the dats
‘o dictionary is made availeble for the generstion of the fecing pege text. The
N L8@r CONLro.s &ra BoNni1tOors the status of the operstion vis prospis, error
- R@asales anrc sirTeer updeces.
l‘.
JI
" v
:\: AU THOR Capt Steve Johnson DATE 18-7-87 READER i
B PROSECT SA Tool REV 1.0 loate i
- C1
“ee } 0D Format
. : Selace
j Entitty
9 ,
o " —e Gather prompts- paates ZRY nfo
- — Inputs i[bR
i o l -

| |
B ! 2 ! i) T
I ! =
| Orafe; 0D f_.""ﬂ J
—

: ! .
o, ' [o]s) | Jal'aiF' e Name

. i

[3. ‘
< \ 1 !
':- i CmoioudiDO Save !
> " iao 0D D@t ni*-org

‘ i Descr ption o<
v —~___ ¢ ~n
:.* Tuser Imouts
. 230 tnouts ‘rom dlagram

Toramots-upcatase
.. Torompts-updates
W
s
NOCE TITLE Create 00 NUMBER -9
. al i
N
-
-
®
F-9

[e s sk e b bk b ek el St i bk bia e nke el

l"

[4]

.
a4

v

AJ Creete Feacing Page Text

-

Abstract: Create Facing Pege Text coadbines the description fileld of the detas
dictioneries for activaities with the chenges desired dy the user to produce o
fecing pege text. The status of the process is saintained on the CRT.

A3: Gatner Deacriptions collects the descriptions of the Activity Boxes
deacribed on the SADT and produced s dreft facing pege tex: sccording to the

ne AFIT format. The user contrc.a and sonitors the ststus of the operation with
,.'\- the uvee of acreen updaties, errTor sessegea, and promptrs.
) A32 Edi1t Dref: takea the draf: fecing pege text enc ellowa the user to ecit
i1+ for fina. cC2py. The user contrcls ana monitors the etetus Of ~he Operetior
ll with the use O0f acreen updaiea, error sessegea, and proapza.
<. A33 Seve FPT taxes the fine. copy of the facing pege text and pers.is the
user to save s SOopy Of 1t to 8 separaze file. 1f he ec desaires. The uaser inpuZs
- the fi.ename he deslTes %C s20Te “he f..e under. Thia ectivity produces the
(fecing pege ext for the diegras eccording to AFIT formet. The user controls
. and sontors the a%8tus with the uase 3f acreen updetes. Grror sSessages,. and
prompts.
o)
o
7
-’
-
JauTHOR : Capt Steve Johnson DATE 18-7-87 |READER |
PROJECT SA Tool REV 1 @ DATE hi
FPT FormatCy
|
Descriptions [Gather ‘
- ——————-
i, rs 'Descriptioj— |
s Jssr‘ Inputs ‘ j
1]
|‘ Drafe FPT |
l Egtt !
. ‘Drafe | Secreen updts-errs-prompts CRYT Intg
- — o | o
I nd 1 .
< ! | !
f FoT o ;
I —{ Save i
F''la Name FeT Facing Page “ext
3 ! a2
T 5creen Lodts-er-s-orompts
T Valtd File Names
NQDE TITLE Create Facting Page Text [NUMBER C-3
Al '
F-10

P Tt B R S S)
e T A A A AT A S T e
n_fl.(L’L’L’L(L*.L‘.’L{L’,’L{L{\ [Sl Wy

t L/. .(

-_ ¢~.::'

Appendix G: Structure Charts

The following pages contain the structure charts for

- tthe major modules used in this tool.

o

s
>

TN |

)

4‘\!

™
"-f\

PO R |

'
[4
'
»
b
v
.-.

-

‘HIANWNN urew 3V1101 0 :3QO0N
q

29«.‘_,‘ RNV I |

N t

aproyy i

SJTPwY

20?;

Q
:5{

31va 0°1 :A3Y 10031VS :1031O0OMd
¥Iaviy| /(8/1/01:31vQ uosuyor "< urerden YOH LNV
- e (TN O ° Y ‘A% 2 ‘y %y

> '-l'\v('.“n“

% 3
¥

e

R
Lae

-
Mo
()

4... "
.

i

g
PRl

48,078, N,

kA
""\-t""n"‘
s Ead

-

T S T P |
OO S OO R AN O
K 49, 90,0 Y, 0

5

R S A i oy
AN, S LAY CL AN
[} B e 10 D B o M 0 LS

3

I
‘vl‘

s

oy "."‘W

-l

M i grah o
v AMCIMCE -t SR oA aus bl ot srg sae sag ea o0

Land Sl Gul o8- s A b ¢

CASN Al ARl Sah el vaus g g anis And)

LA A A An Ml he ate 0 -aj

TwywLwLw

‘HIGNNN

sUOT

1oung

100J, 8ptAoad

ER L] Z 300N

7wy] [sz

o

ap

€2 suonpuny
IS

hoyd

"2 29&:&

Wb

SpHay

T Wpuny
dv)

mn

Py .
S ~

//// umydurnyg
sumdisxsag . 7 /JAAK

N

mv?ot.
7

N
AN
SANINULC vyng I/O AN UG
//r
// .
© skapung
[0}
Aprreg
3lva 0°1 :A3M 1003vVS :133royd
Y3aviu| {e/1/01 :3)1yQ uosuyor 8ae31s 1ded :YOH LAV
-l--.- n. N .< .-..-. . —.-.. ...‘. . .\..\-..— -J..J\.J- ’ ', . ‘unn..-v\ -'. .J.l. ~- rcnn-a. .T-\.fqi (-.f-. .r._ ...J) ...

e

LI o
FIE A

8

~
e

o W

L AR

“~ '."\
HLVB Ty,

.
o
(3

OO a M n
-f‘\-l' W
Ad i)

f k

AT AT AT A N kY Y)
N ‘cbf‘.:a“f“ o
Bl

A
£

R g

RN

Pl L
D

n
I‘ v

.,
, f..-".

HIBNNN suotjound weaxdwiq aptaoad :JVqML 2 2 :3AON

87t etz 272 $'7 [+3z £ 1772
INQI4 d.mm:?w oyuy oy xoy
A)| Fweo)| ey || v || sy vesf] sy gyl S weal| g ppy
7

v /U Q ‘ \\v\\ 0.7
d_&_ N Q Jinjmy Ontpiruis 7 \%& O\\

W ,
] lv &E—\\
/s
S

v

i
\\\ 5
/
/
/Z

suogIun &

BELEE

woabm ‘
Ipiras) .

31va 0'1 :A3M 1003VS : 13370¥d
¥yiavay| Le/1/01:31yg uosuyor eAays 3ded:yOoH LNV

ey

o)

oo

» Al - ™
4 -."\:';.

b
Ny

’.-;.'-

PRI Rt irCC N AR

‘Al 1]

G, % Sy N

Lk A Il A AR M

1 i

AEI
LA & L

‘HIGWNN

xof ppy

30

1°2°2 :3A0N

h e

eI

rd Pry

[A BEE]

.P:J:Sw %)

r.c_u§n~

xig 329

e

“aquiny

Ampy 399

Co_auj
o)

Lgc&:ﬂ&V
xo UEQZ xCM_

7

xay
Fry

IRE¥A

AN
\;::avm
3

L'
5

e

”

PPN s
e

A Lo A
AN, "ot "'!

G
T At e A g
SO s
o i W

.

™ T T, g
Y '.'o(“','-."\

31va 0°1 :A3M

1003VS 10370y d

S's
h

!

< '

yiavay| £9/1/01:33yqg

uosuyof 9A83S 1den ‘HOHLNY

A)

«
-i

|y s

SN

P

e
.

v ., . . .
Pt
Kokl X)

L

W

s,

W’

aay an® K %o

‘HIGNNN xoff Sutistxd 31pd 3V | z°2 2 :300N

17 hve? £

xo it g
oo Ty xoy >..._:ﬁ@ £ N
sy

X EE] T2z

W % &} *oy
czu.wos.w« Ty

Jaw xoyg
xMW/MJ \ O\\ FInmpigg 20y

2Inymay

xog 7
\\
=
2Te
rogy
Bugeng pp3
31va ‘A3Y 1003VS: 103108 d
¥Y3avau| /2/1/01 :31v¥Q uosuyor aa3j}s 1ded (YOH LNV

B I EE N ~ 2 T T L A I ~ R T

:HIGNNN ojul aapeaH ppY :3V4IL)| € 2°2:3QON
[TrTi t2°¢ SEre Fee? [c¥7rZ Tt réze
Jaqunpy Y PN ugisIrRy 3100 o) soypn
Ji iy
J vy PPy PPy Fry v PPV FFY
N ‘ \u
Saqwny Al 3N voIsiAzy 33vq uuuﬁ»\d Loy
~
]
L
/
/
L
£
apuy
.\Nﬂa:
Ty
3iva 0°1 :A3MH 1003VS:13370¥d
¥3Qv3I¥] {{n/1/01:31vVQ uosuyofr aarels iden :YOH 1NV

V.4 Y. W S Wy e

HIGNNN ojul aJapeeH 31pd :IVLIL | 4°2°2:3QON
Late IpeT Shi LY X#4 TENTT h2 W2
Joquny Wy 2PN uginng Yoy Joyyny
A3 ENE] w3 AP 'p3 F'pP3
LM&“&(/ »\V A// caz;.&nw Any
/
/,
.
btz % aqy
Aopwy
M
ilva 0°1 :A3Y 10031VS:123roNd
¥3avay| <(s/1/01:31vQ uosuyor 8a331s 1ded :YOH LNV
A RN (AP R A R S

..,’.

3

AR A

I\f\f\

‘v"‘n"v’ * s ®w

WIASSS AN]
VAN

3
)
N
)
»

flinr Zat Aaf b Sat

i

Poiar e A i Sts it et

v

[ol b SN, e A

a

e)
PR

‘HIGNNN autrT 3TpA :IVLIL | 6 2°2:3A0N
iS3?? ST 2 827 2522 1’522
STINUNY
Omcvc 3 * mgmu.sk_a&auu(. ¢ 707 CAdN | U]
w) sbuoys || P T3 232)37 puy

O
g4
M ®AnPn§

)
Luvc.ﬁ Ju d:_u-
el iy
Jun
. 52 3¢ 4
7 3p3
alva 0'1 :A3Y 1003V 12310Ud
¥3Qv3y| Lg/1/01 :31vQ uosuyor sae3s 3ded YOH LNV

.fl ’- -4. Pﬁ-. .-; q-

Selah, S

[y

P .
L.

N

AN

-
“ e .
-
wA

s .
“mgl>
(N,

I‘w

N
e

-
Ml

"
CAC AN,

R
‘,-'\"'\’\
A

. 7
f‘-

5

ol

-
o

FTFTITITIP

e alie® 4

A el

Lo Sl - o

-

W

v ey

harh g a4

Wy

-r.‘vx-\'\"."\"

‘HIBNNN

ourt ppv :3V1ML | 9°2-2:3Q0N

£97't [2972 ryrz
wu_ :sCﬁ((.o.usou_ ugijn:ro 1
Uis g 10 ¢ 379
A
R 07,
oy Hoy§

31vQ 0"l :AIY

1003VS :12310Md

Y3aviy| ‘/n/1/01:3)1vg

uosuyof aasys 3den :NOH 1OV

G-10

€'9°2°2
NIANNN §33NQ1J313Y 3Je3}S 38D : V)11 wuooz
25 IF2) SEvi? 239t 2 LK 15912 [Tevzz
FRyMwy ¥-100 - ey sy (Puuny
Hyop) k by

AN
o

£y

SIIqUYyY
Hos 39

..d—uOu U&«ﬁ.sﬁ(tﬁw _,“ULG m_uac_ __<

31vQ EL

1003VS :10310OMd

¥3av3H| /g/1/01 :31vVQ

uosuyor aas3< 1ded :YOHINY

.- '- J.. .‘.f‘-f,.-, ﬁ..n....... ...\... E ‘..,. E-_ 3 ..-..... . K..-an%..

IHN

L e o

G-11

S
.

!

LA e
_P\I,‘\""..\

gl

»

:‘..\J\:Nd‘ ol '4"-

W,
2

ek

Lo P e ™
.J-ew-:'_‘* e

>

———-
o

o € o "
A T

n'9°2°2

‘MIBNNN §83NQ133V pud 38D :37)4) :300N
0 xuz u_.ﬁ;ﬂ:\ ﬂcm _.“jcw JMDS u5 E:#.& wcc mﬁ:_.ﬂ_ P2l Eoi.é:h_ :(
P
7Y HAMINY MY :iﬁiu?— shote
vep 1130 JN301
iy 7 y .@.1 ApiLL w:.: .:.2~, Qianﬂ. VLT SRR
Jap Fuop) _ 45_:_ 3 ﬁz‘ﬁ wﬁﬁ T Yoo oo
A
/
/
/
/
=
s
2
SAAURY
i3 379
3lva 0°1 :A3Y 10031VS: 12370y d
¥3av3™| /ls/1/01 :31VQ uosuyor aAe31s 3ded :YOH LNV

N
P
]

‘HIANNN

e173tnbg a1e1en/ppv :IVLIL | 422 :3QON

L2 {4
=y aybhnbs

S-PQ guk

Edtz

g rh. lwwx ‘F

L4 ¥ 4
LA d

g
1 FPY

[§ % ¥4

U 1

nws&x uNQ

- 3uidg A4 vigy 9(bbip
V/ /u.@w:%ﬂn/ \m:&s»w R * ww

s u%&.:@m

13

[AL 4 4R) L2

?) m%.avw
¥R/ Fey ’

3iva 0°1 :A3Y
¥3av3iy| ‘la/1/01:31va

1003VS: 12370y d W
uosuyor aaa315 1ded :MOH LNV

T Ty

e el Al e il oAl ok a0 St

Ll Al Aafl Sadh Sof |

P Sl Al " el Pad

i

‘MIGNNN aj0ujood 33313/ppy

‘3111 | 8°2°2:30Q0N

L fgrz Y97F |3 34 28t 977
Tl Hogoy T 99vioy wo13mo uaioxy
Wy TPIPQ | | sTpiovy puy o} ppy STYMY=) 1790] WA P91 eIy 3r9
.x,ac//i/ woqoay - \
- »1 ey
/%O) %
PAl| 338”/3 T
A -
1
v
877
2y
RERIN |
3ivao 0'1 'A3M 1003VS 1 123r0oyd N
¥3IQv3IH| /n/1/01 :3Lva uosuyor aae3g 3ded :YOH 1INV
. K UG O A B AAEEEFS IEEENCUNEEE AN RN R AR

T, K

Pl d . ey

P S Rt Rup R

-2} Talial il Ml P Y

L37T%%SS

‘HIANNN EUOI3IoUNd "OstW 3ptAoud :37)1) €°2:300N
Lte %7 | (332 K [Z¢2 g2
{mfurmpg) \ivw.iay)
vInIG winy Amyrang Aug, L WIS
) _ Juisg NN ts hoydsig Pbunyy Juray
~C =
//f QEE ‘.z—a \\) \
N F«. T \..\
“ Ly
N
N -
SUIIVN4
RAIVY,
U—:Ztn_
3ivo 0°1 :A3M 10031VS :1J0310O¥d
Y3Av3IH| la/1/01:31VQ uosuyor saa3s 1den:YOH LNV
Sl SENUVNE VR TS

G-195

‘HIAWNN

suot1ydound (0 aptacad IV4HL

%1°2 :300N

adg
CALLY

Uy
P3|

/\\ x:cu oaﬁ
/ ﬂﬂu_f_&qu
O

.Txxjcw aq —

0O

aad
9Yrevar)

\\ SAM)IVY§ OYog

31vQ 0'1 A3

1003VS 1 123¢0ud

Y3avau| ‘la/1/01:31vyQ

uosuyopr aasls ided YoM LNY

G-16

|
|
|
|

Al el --' -

‘HIANNN suorjound Ldd apiaodd :3V401 $*2:300N

ase le2 .

144 3nvg | 144 173 S v

“ dd4 O\wzo.ﬁcqgﬁ 3
s
S

) P

Nl v 2| _ﬁu_ﬁ_sau »

17

s uarpun

dd
K A2 |

ilva 0°1 :A3M 1003VS: 103r0ONd
¥3avay| /r/1/01:31yq UOSUYor 8A83S 3den :MOH LNV VY

HIANNN suorjound indinc apraoad :IVLIL 9*2:30ON
" N
9z |k ¥4
m:.z:CD

Vg 2a0g VY| oy Iany .

./..T

TSN Mne 0y e

-Fl-..ﬂ

e

7
A
=
<3
S
[~ ad
S
A
u
Lo
G-18
'-‘F' \’

97 ¥

Sug pury

&:&:Q %.3&_)

31va 0°1 :AIY 1001¥S:12310Yd N
¥3av3iy| /a/1/01:31va uosuyor aaa3s 3ded :YOH ANV ~

o e
s n LI € AT

T

e o

Bibliography

AF1IT/SI. "An Introduction to AFIT Educational Computer
Services." Student Handout. 22 April 14987.

Bailey, R. W. Human Performance Engineering: A Guide for
System Designers. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1982.

Connally, Dwaine Common Database Interface for
Heterogeneous Software Engineering Tools. MS Thesis,
School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December
1987.

Foley, James D. and Andries Van Dam. Fundamentals of
Interactive Computer Graphics. Reading, MA:
Addison-Wesley Publishing Company, 1982.

Foley, Jeffrey W. Design of a Data Dictionary Editor in
a Distributed Software Development Environment.. MS
Thesis, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, June 1986.

llansen, Wilfred J. "User Engineering Principles for
Interactive Systems,"” Interactive Programming
Environments, edited by David R. Barstow and others.
New York: McGraw-Hill Book Company, 1984.

Hartrum, Thomas C. Software Development Documentation
Guidelines and Standards (Draft #3a). Air TForce
Institute of Technology Department of Engineering,
Wright-Patterson AFB, OH, (September 26, 1986).

Letkovits, Henry C. Data Dictionary Systems. Wellesley, MA:
Q.E.D. Information Sciences, 1977.

LLeong-llong, Belkis W. and Bernard K. Plagman. Data
Dictionary/Directory Systems, Administration,

Implementation and Usage. New York: John Wiley & Sons,

1982.

Mailary, T. C. Design of the Human-Computer Interface for a
Computer Aided Design Tool for the Normalization of
Relations MS Thesis, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH,
December 985,

S R A o e T N T e L
R A AT Sy

R N e e SN
7 \-f‘"-" \.'-"-'r"-'r‘\

-yt T T Te 2T LY LT T e
RN TR AR RN
AR "".,.\. SRS

e
CE)
i) -

\‘. .' N v
s Ld

.\l

® e
L
»

RN

e W Y -
ORI

Malh ol Bod Sk "'U'Y'}"-";{T

Materials Laboratory, Air Force Aeronautical Laboratories.
Iintegrated Computer-Aided Manufacturing (1CAM) Function
Model ing Manual (lDEFU). Wright-Patterson AFB: USAF,
June 1981.

. Newman, William M. and Robert F. Sproull. Principles of
| Interactive Compuler Graphics. New York: McGraw-Hill
- Book Company, 1979.

Price, Lynne A. "Studying the Mouse ftor CAD Systems,”
Proceedings, ACM LEEE 2lst Design Automation Conference,
/) 21: 288-293 (June 1984).

Pressman, Roger S. Software Engineering: A Practioner's
Approach. New York: McGraw-Hill Book company, 1482.

Ross, Douglas T. "Structured Analysis (SA): A Language for
. Communicating Ideas,"” IEEE Transactions on Software
Engineering, SE-3, NO.1: 16-34 (January 1977).

Softech Inc. An Introduction to SADT Structured
. Analysis and Design Technique. Softech Report 8022-78Kk.
= Waitham, MA, 1976.

<. Smith, Daniel G. AUT()IDF.FO: A New Tool for Function
e Modeling. Technical Publication. The Software
Technology Company, Waltham, Mass., September 1981,

. Thomas, Charles W. An Automated/Interactive Software
Engineering Tool to Generate Data Dictionaries. MS
Thesis, School of Engineering, Air Force Institute of
'-} Technology (AU), Wright-Patterson AFB, OH, June 1986.

Urscheler James W. Design of a Requirement Analysis Design
u Tool Integrated with a Data Dictionary in a Distributed
- Sottware Development Environment. MS Thesis, School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, Oil, June 1986.

; Woftinden, Duard S. interactive Environment for a Computer-
. Aided Design System. MS Thesis, Naval Postgraduate
o School, Monterey, CA, 1984.

P

*,

BIB-2

A AN "'-."' ""* LT AN O R NS LR R R Eit VO S OREN ER RN VRS QUGN PR SR (NN a0
'~-‘ " 5 \.q‘- n.q Xl X N A g XN :"\ PR R TR ,.c..o.. h' Bl ‘Ff 9%

LN

"t

n'\ 'l'}‘

Ko\ 4

>

At

v,
R

VITA

Captailin Steven Y. Johnson was born 26 June 1959 1n
Pierre, South Dakota. He graduated from T'. F. Riggs High
School in Pierre in May 1977. In December 1981, he received
a Bachelor of Science in Electrical Engineering from Scuth
Dakota State University and was commissioned in the USAFW
through the ROTC program. In February 1982, he began
active duty with the 44th Strategic Missile Wing at
Fillsworth AFB, South Dakota, serving as Chief of the
Technical Engineering Branch. In May 1986, he entered the

School of Engineering, Air Force JInstitute of Technology.

Permanent address: 114 S. Filmore
Pierre, SD 57501

Vit i

. -'-'.'.'. LA L4 A" [
- -)l,t \' "v. .’ ‘\q "n "-'\.'\- e
L TR YGIR e L Y N VORI

'\..

'*.

*

rox oAty t o

‘g 3 oS X r)

E_ 8 8 24

s

PR M AR LB SNh MM Vel SrE g abd i th e et gt eve S SiR A SN ey Sed- SRt At AnS Snd At g

Bt

nziassifiex
SECURITY CLASSFCATION OF THIS PAGE
..“ Form Approved
.. REPORT DOCUMENTATION PAGE OMB e 2704 0188
1
'a REPORT SECJR.TY CLASSIFICATION 1b RESTRICTIVE MARKNGS
vnclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONAVA.LAB!IL Y OF REPQORT
£7Proved for punlic release
X 20 DECLASSIFICATION . DOWNGRADING SCREDULE Ulstripution unLimites
R
.
4. PERFORMING ORGAN:ZATION REPORT NUMBER(S) S MON!TORING CRGAN ZAT ON RZPCR™ _NBER S

ARIL/G2/2d3/070 =25

~.6a

NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL 7a. NAME OF MONITORING ORGAN.ZAT CA
- . . i (If applicable)
Scnool of zngineering

~-:6c

i

ADDRESS (City, State, and ZIP Code) 7o ADDRESS (City, State and ZIP Cooe)

Alr Force institute of Tecnnology
wrlznt-ratterson AFLE, Oa

- — -

- 4543355213

"~Ba. NAME OF FUNDING ' SPONSORING 8D OFFICE SYMBO. | 9 PROCUREMENT INSTRUMENT IDENT.F CATiON NUMBER
ORGANIZATION (If applicable)

o 03Z /3010 S/3M

+8c. ADDRESS (City, State, and ZIP Code) 0. SOURCE OF FUNDING NUMBERS

" Penta- PROGRAM PROJECT TASK WORK UNIT

l Ten-ason ELEMENT NO NO NO ACCESSION NO

washinzston, CC
20301-7100

S

TIT_E (include Security Classification)

A GRAFRICS ZDITOR FOrR STRJCTURED ARALYSIS WITA A LATA DICTIONARY

-
L

PERSONAL. AUTHOR(S)

Steven -. Jonnson, captain USAF

_'~13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |'S PAGE COUNT
- .S Thesis FROM TO 1957, bec 145
| 16. SUPPLEMENTARY NOTATION o
Bpsroved O R ETR 1:.1.14
“J._ ~ \\}’(-([L"\ ' ’ I
LYLN p o {Me Xy
-17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if ne JTSS'?ry and identify by black numbu;)_c.,mn'
FIELD GROUP SUB-GROUP Interactive Graphics, Sofitware Engineering
15 T Ac Computer Aided Design, lLata wictionary

119

. ABSTRACT (Continue on reverse if necessary and identify by biock number)

A computer tocl was designed and implemented tnat integrated two
approaches for documenting software reguirements analysis, structured
analysis (SA) diagrams and data dictionaries. The tool prcvides the
provides the requirements analyst with an environment for creating the
SA diacrams and entering parts of tunc data dictionary. The tool aerives
tne remaining aata dictionary information from the diagram.

saciground 1information is provided on existing structured analysi
tecnniques, data dictionary uses, and on human computer interface aesign
issues.

A graphic SA syntax was derived from existing SA technigues and the
data dictionary formats were specified by previous work at AFIT.
requirements for the human computer interface as well as the functional

».. aspects of the tool are discussed. A sunmary of the design decisions made
are also presented.

>, 20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

«@ OunceassieeounumTed XXSaMe as RPT (] OTIC USERS Jdnclassified

‘223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

ur. Thomas S gartrum 513-255-3575 ARPIT/ENC

) DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

o

:a:a"r*‘f“.r".-"a NS "-—: .~:/

o) \-C\E’\E’\ r"-

DatUal)
'I‘I-l

vy, 4

LA

v sy
FhaTi s 1 d

"
LI
Y

’ s

N NN
. -

~ -

5%

0
‘3

3 <
& A A

PREOoK

« 2

227 TIRARARLRL N 1N LBy] !,".“. “. “."-‘

-

1G. Abstract

The tool was used and evaluated by more than 35 graduate level
software engineering students. The students evaluated the tool using a
standard questionnaire developed at AFIT for this purpose. The responses
were compiled and analyzed using statistical methods and are also presented.

.f\-\.n..v...ln..-.-‘/-.n.--n‘--b... LA
, . .J‘bv.adhk.hh _...Ja.f..

A A

HY VI wn WX ~
» -..-... P ’ .l.
PO ... A A sw ~ PR, MR ETIEL) W L N vos s
M 2 o ¢+ A - NP »

Mg X g,

